当前位置: 首页 > news >正文

5.23R语言-参数假设检验

理论

方差分析(ANOVA, Analysis of Variance)是统计学中用来比较多个样本均值之间差异的一种方法。它通过将总变异分解为不同来源的变异来检测因子对响应变量的影响。方差分析广泛应用于实验设计、质量控制、医学研究等领域。

方差分析的基本模型

方差分析的基本模型可以用以下形式表示:

单因素方差分析

单因素方差分析(One-Way ANOVA)是最简单的形式,用于比较一个因素的多个水平对结果的影响。例如,比较不同肥料对作物生长的影响。

步骤:

1.假设检验

2.计算组间方差和组内方差

组间方差(MSB,Mean Square Between groups)

组内方差(MSW,Mean Square Within groups):↳

3.计算F值

4.查找临界值

5.做出决策

如果计算得到的F值大于临界值,则拒绝原假设,说明组间均值存在显著差异。

如果计算得到的F值小于等于临界值,则不拒绝原假设,说明组间均值不存在显著差异。

多因素方差分析

多因素方差分析(Two-Way ANOVA 或 Factorial ANOVA)用于同时研究两个或多个因素对结果的影响,且可以考察因素间的交互作用。例如,研究不同肥料和不同灌溉方式对作物生长的联合影响。

方差分析的假设条件

  1. 独立性:各组别的观测值相互独立。
  2. 正态性:各组别的观测值服从正态分布。
  3. 方差齐性:各组别的方差相等。

如果数据不符合这些假设,方差分析的结果可能会失真,因此进行正态性检验可以帮助我们评估模型的适用性。

在进行正态性检验时,我们主要关注检验的 p 值。如果 p 值较大(通常大于 0.05),则表明数据符合正态分布的假设,可以继续进行方差分析。如果 p 值较小,则可能需要考虑使用非参数方法或对数据进行转换以满足模型假设。

实际应用中的考虑

在实际应用中,必须确保满足方差分析的假设条件,否则结果可能不可靠。当假设条件不满足时,可以考虑使用非参数检验(如Kruskal-Wallis检验)或调整模型(如方差不齐的情形下使用Welch's ANOVA)。

结论

方差分析是一个强大的统计工具,可以有效地检测多个组别之间的差异。然而,应用时需要谨慎,确保数据符合基本假设,并在必要时进行模型调整或采用其他统计方法。随着统计学的不断发展,方差分析的方法和应用也在不断进步,研究人员需要不断更新知识,以便在复杂的实际问题中作出准确的判断。

R语言实操-方差分析模型

方差分析(ANOVA)模型用于比较多个组之间的均值是否有显著差异。进行方差分析模型,最好对数据进行正态性检验。正态性检验有助于确认方差分析模型的假设是否满足,特别是方差分析对数据的正态性有一定的要求。写了另一篇关于正态性检验的文章:

5.22 R语言-正态性检验-CSDN博客文章浏览阅读66次,点赞2次,收藏4次。正态性检验的目的是确定一组数据是否符合正态分布(也称高斯分布)。在统计分析和数据建模中,正态性假设是许多统计方法和模型的基础。了解数据是否符合正态分布有助于选择适当的统计方法和确保分析结果的有效性。本文主要从方面来进行正态性检验。即假设检验的角度来说,数据是否服从正态分布可以通过与“”这样一个零假设进行假设检验计算,构建相关统计量来计算出检验结果。文中提及的Q-Q Plot是正态检验 (Normality Test)——常见方法汇总与简述-CSDN博客。https://blog.csdn.net/Shirleyluck/article/details/139131768?spm=1001.2014.3001.5501icon-default.png?t=N7T8https://blog.csdn.net/Shirleyluck/article/details/139131768?spm=1001.2014.3001.5501

进行方差分析(ANOVA)模型的步骤
  1. 准备数据:确保你的数据是干净和适合分析的。

  2. 拟合模型:使用 aov 函数拟合方差分析模型。

  3. 检验模型假设:包括正态性检验和方差齐性检验。

  4. 查看结果:使用 summary 函数查看方差分析的结果

 m = aov(Time ~ IDE, data=ide2)

使用 aov 函数来拟合一个方差分析(ANOVA)模型。具体而言,你正在比较不同 IDE 组别之间的 Time 数据是否存在显著差异

  • aov(Time ~ IDE, data=ide2): 这行代码指定模型的公式,即 Time 是因变量,IDE 是自变量。data=ide2 指定了数据来源。
  • m = : 这行代码将拟合的模型赋值给变量 m,以便后续进行模型检验和结果分析。

可以使用 summary(m) 来查看方差分析的结果,了解各个组别之间的差异是否显著。

summary(m) 的输出通常包含以下部分:

  • Df(自由度):自变量和误差的自由度。
  • Sum Sq(平方和):自变量和误差的平方和。
  • Mean Sq(均方):平方和除以相应的自由度。
  • F value(F值):自变量的均方除以误差的均方得到的F值。
  • Pr(>F)(P值):F值对应的P值,用于判断显著性。
# 拟合方差分析模型
m <- aov(Time ~ IDE, data = ide2)# 正态性检验
install.packages("nortest")
library(nortest)
shapiro.test(ide2[ide2$IDE == "VStudio",]$Time)
shapiro.test(ide2[ide2$IDE == "Eclipse",]$Time)# 方差齐性检验
bartlett.test(Time ~ IDE, data = ide2)
install.packages("car")
library(car)
leveneTest(Time ~ IDE, data = ide2)# 查看方差分析的结果
summary(m)
绘制Q-Q 图

为了评估方差分析模型(ANOVA)假设的正态性,使用qqnorm和qqline绘制 Q-Q 图。 Q-Q 图(Quantile-Quantile Plot)是一种图形方法,用于比较数据的分布与正态分布。如果数据点大致沿着一条直线分布,则数据可以被认为是正态分布的

##试试检验假设

#首先是正态性假设
# Shapiro-Wilk normality test(夏皮罗-威尔克检验)
shapiro.test(ide2[ide2$IDE == "VStudio",]$Time) #H0:研究对象符合正态分布。
shapiro.test(ide2[ide2$IDE == "Eclipse",]$Time)
## 满足正态性假设

# 但真正重要的是残差正态性【仅展示】
m = aov(Time ~ IDE, data=ide2) # fit model
shapiro.test(residuals(m)) # test residuals
qqnorm(residuals(m)); qqline(residuals(m)) # plot residuals
## 如果残差是正态分布的,那么这些点应该近似地落在一条直线上。
## qqline函数在这图上添加了一条参考线,这条参考线是正态分布的理论分位数线,有助于直观判断残差是否近似正态分布。

# 不正态可以尝试数据转换【仅展示】
ide2$logTime = log(ide2$Time) # log transform
View(ide2) # verify

#其次是方差齐性假设 # 方差齐性检验就是看两总体方差是否相等.比如在两独立样本的t检验中,两总体方差1.相等 2.不相等
install.packages("car")
library(car)
leveneTest(Time ~ IDE, data=ide2, center=mean) # Levene's test:用于检验两组及两组以上独立样本的方差是否相等。
leveneTest(Time ~ IDE, data=ide2, center=median) # Brown-Forsythe test: Brown-Forsythe检验是指采用Brown-Forsythe分布的统计量进行的各组均值是否相等的检验。

##执行独立样本T检验: 单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。
t.test(Time ~ IDE, data=ide2, var.equal=TRUE) #var.equal= TRUE 方差相等
###根据上述结果,可以得出结论:有足够证据拒绝零假设,接受备择假设,即Eclipse和VStudio在完成任务所需平均时间上存在显著差异。
###具体来说,Eclipse组的平均时间比VStudio组多166.05个单位(468.15 - 302.10),并且这个差异是统计上显著的。

相关文章:

5.23R语言-参数假设检验

理论 方差分析&#xff08;ANOVA, Analysis of Variance&#xff09;是统计学中用来比较多个样本均值之间差异的一种方法。它通过将总变异分解为不同来源的变异来检测因子对响应变量的影响。方差分析广泛应用于实验设计、质量控制、医学研究等领域。 方差分析的基本模型 方差…...

rnn 和lstm源码学习笔记

目录 rnn学习笔记 lstm学习笔记 rnn学习笔记 import torchdef rnn(inputs, state, params):# inputs的形状: (时间步数量, 批次大小, 词表大小)W_xh, W_hh, b_h, W_hq, b_q paramsH stateoutputs []# 遍历每个时间步for X in inputs:# 计算隐藏状态 HH torch.tanh(torch.…...

解析Java中1000个常用类:CharSequence类,你学会了吗?

在 Java 编程中,字符串操作是最常见的任务之一。为了提供一种灵活且统一的方式来处理不同类型的字符序列,Java 引入了 CharSequence 接口。 通过实现 CharSequence 接口,各种字符序列类可以提供一致的 API,增强了代码的灵活性和可扩展性。 本文将深入探讨 CharSequence 接…...

微服务远程调用之拦截器实战

微服务远程调用之拦截器实战 前言&#xff1a; 在我们开发过程中&#xff0c;很可能是项目是从0到1开发&#xff0c;或者在原有基础上做二次开发&#xff0c;这次是根据已有代码做二次开发&#xff0c;需要在我们微服务一【这里方便举例&#xff0c;我们后面叫模版微服务】调用…...

德人合科技——天锐绿盾内网安全管理软件 | -文档透明加密模块

天锐绿盾文档加密功能能够为各种模式的电子文档提供高强度加密保护&#xff0c;丰富的权限控制以及灵活的应用管理&#xff0c;帮助企业构建更严密的立体保密体系。 PC地址&#xff1a; https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee ————…...

超融合架构下,虚拟机高可用机制如何构建?

作者&#xff1a;SmartX 产品部 钟锦锌 虚拟机高可用&#xff08;High Availability&#xff0c;简称 HA&#xff09;是虚拟化/超融合平台最常用、关键的功能之一&#xff0c;可在服务器发生故障时通过重建业务虚拟机以降低故障对业务带来的影响。因此&#xff0c;为了充分保障…...

工厂模式详情

一.介绍工厂模式的用途与特点 工厂方法模式是一种创建型设计模式&#xff0c; 其在父类中提供一个创建对象的方法&#xff0c; 允许子类决定实例化对象的类型。定义工厂方法模式(Fatory Method Pattern)是指定义一个创建对象的接口&#xff0c;但让实现这个接口的类来决定实例…...

【Word】调整列表符号与后续文本的间距

1. 默认的列表格式&#xff1a; 2. 修改间距&#xff1a; ************************************************** 分割线 ************************************************************ 3. 效果...

匠心独运,B 端系统 UI 演绎华章之美

匠心独运&#xff0c;B 端系统 UI 演绎华章之美...

Java电商平台-开放API接口签名验证(小程序/APP)

说明&#xff1a;在实际的生鲜业务中&#xff0c;不可避免的需要对外提供api接口给外部进行调用. 这里就有一个接口安全的问题需要沟通了。下面是干货: 接口安全问题 请求身份是否合法&#xff1f; 请求参数是否被篡改&#xff1f; 请求是否唯一&#xff1f; AccessKey&am…...

Tale全局函数对象base

目录 1、 Tale全局函数对象base 1.1、 * tale alert删除 1.2、 * 成功弹框 1.3、 * 弹出成功,并在500毫秒后刷新页面 1.4、 * 警告弹框 1.5、 * 询问确认弹框,这里会传入then函数进来...

【启程Golang之旅】掌握Go语言数组基础概念与实际应用

欢迎来到Golang的世界&#xff01;在当今快节奏的软件开发领域&#xff0c;选择一种高效、简洁的编程语言至关重要。而在这方面&#xff0c;Golang&#xff08;又称Go&#xff09;无疑是一个备受瞩目的选择。在本文中&#xff0c;带领您探索Golang的世界&#xff0c;一步步地了…...

COMSOL中液晶材料光学特性模拟

前面我们根据FDTD官方文档设置了液晶指向的模型。COMSOL也可以根据相似的方法设置各项异性的周期性变化的材料。 该方法参考了luneburg_lens的COMSOL文档 在给出的文件中&#xff0c;可以发现定义-变量中可以使用默认坐标作为变量&#xff0c;即xyz。因此&#xff0c;折射率也可…...

虚拟现实环境下的远程教育和智能评估系统(五)

查阅相关VR眼动注意力联合教育学相关论文 1.Exploring Eye Gaze Visualization Techniques for Identifying Distracted Students in Educational VR&#xff08;IEEE VR 2020&#xff09; 摘要&#xff1a;我们提出了一种架构&#xff0c;使VR教学代理能够响应眼动追踪监控…...

【算法】模拟算法——Z字形变换(medium)

题解&#xff1a;模拟算法——Z字形变换(medium) 目录 1.题目2.题解3.参考代码4.总结 1.题目 题目链接&#xff1a;LINK 2.题解 利用模拟&#xff0c;来解决问题。 首先创建出一个O(numRows*n)的数组来&#xff0c;并按照题目要求把每个字符按顺序填进去。 这里以numRows…...

上位机图像处理和嵌入式模块部署(f103 mcu获取唯一id)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 对于stm32f103系列mcu来说&#xff0c;一般每一颗原厂的mcu&#xff0c;都会对应一个唯一的id。那这个id可以用来做什么用呢&#xff1f;个人认为&…...

运筹学_3.运输问题(特殊的线性规划)

目录 前言3.1 平衡运输问题中初始基可行解确定运输问题平衡运输与非平衡运输平衡运输问题的数学模型单纯形法解决平衡运输问题&#xff0c;初始可行基的确认 3.2 平衡运输问题的最优解判别求检验数表上作业法 3.3 产销不平衡的运输问题运输问题中产大于销的问题运输问题中产小于…...

科研项目书写作学习(持续更新中...)

写好一个科研项目书也是科研中很重要的一部分&#xff0c;所以借这篇博客做一个积累。还是以模块化的方式吧&#xff0c;后面慢慢那再整合逻辑。可能写的也不是很好&#xff0c;慢慢提升吧~ 背景 科研项目书的背景怎么写&#xff1f;首先要突出问题的价值(也就是做此研究的动…...

男士内裤哪个品牌好一点?2024热门男士内裤推荐

男人的内裤保质期只取决于被别人看见的次数&#xff0c;如果某条内裤从未被别人看见过&#xff0c;那它永远都是你的新内裤。也就是说&#xff0c;只要穿着破内裤这尴尬的瞬间没被目击&#xff0c;男人就能永远和一条内裤在一起。 实际上如果长时间不更换男士内裤&#xff0c;…...

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...

P10909 [蓝桥杯 2024 国 B] 立定跳远

# P10909 [蓝桥杯 2024 国 B] 立定跳远 ## 题目描述 在运动会上&#xff0c;小明从数轴的原点开始向正方向立定跳远。项目设置了 $n$ 个检查点 $a_1, a_2, \cdots , a_n$ 且 $a_i \ge a_{i−1} > 0$。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时&#xff0…...

新版NANO下载烧录过程

一、序言 搭建 Jetson 系列产品烧录系统的环境需要在电脑主机上安装 Ubuntu 系统。此处使用 18.04 LTS。 二、环境搭建 1、安装库 $ sudo apt-get install qemu-user-static$ sudo apt-get install python 搭建环境的过程需要这个应用库来将某些 NVIDIA 软件组件安装到 Je…...

vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能

vxe-table vue 表格复选框多选数据&#xff0c;实现快捷键 Shift 批量选择功能 查看官网&#xff1a;https://vxetable.cn 效果 代码 通过 checkbox-config.isShift 启用批量选中,启用后按住快捷键和鼠标批量选取 <template><div><vxe-grid v-bind"gri…...

使用 uv 工具快速部署并管理 vLLM 推理环境

uv&#xff1a;现代 Python 项目管理的高效助手 uv&#xff1a;Rust 驱动的 Python 包管理新时代 在部署大语言模型&#xff08;LLM&#xff09;推理服务时&#xff0c;vLLM 是一个备受关注的方案&#xff0c;具备高吞吐、低延迟和对 OpenAI API 的良好兼容性。为了提高部署效…...