Pytorch入门需要达到的效果
会搭建深度学习环境和依赖包安装
使用Anaconda创建环境、在pytorch官网安装pytorch、安装依赖包
会使用常见操作,例如matmul,sigmoid,softmax,relu,linear
matmul操作见文章torch.matmul()的用法
sigmoid,softmax,relu都是常用的激活函数,linear是线性层:
from torch import nnclass Network(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Sigmoid(),nn.Softmax(),nn.ReLU(),nn.Linear(1024, 64))
dataset,dataloader,损失函数,优化器的使用
dataset,dataloader
官方文档是这么写的:

当我们自定义一个dataset的时候,需要继承Dataset,重写__getitem__()方法,也可以重写__len__()方法,下面是一个例子,我们的数据集存放成这种形式,每一个image图片都对应一个相同名称的label文件,如0013035.jpg和0013035.txt就分别是一个图片和它的label:

import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoaderclass MyData(Dataset):def __init__(self, root_dir, image_dir, label_dir):self.root_dir = root_dirself.image_dir = image_dirself.label_dir = label_dirself.image_path = os.path.join(self.root_dir, self.image_dir)self.label_path = os.path.join(self.root_dir, self.label_dir)self.imgs = os.listdir(self.image_path)self.labels = os.listdir(self.label_path)def __getitem__(self, item):img_name = self.imgs[item]img_item_path = os.path.join(self.image_path, img_name)label_item_path = os.path.join(self.label_path, self.convert_to_txt_path(img_name))img = Image.open(img_item_path)with open(label_item_path, 'r') as f:label = f.read().strip()return img, labeldef convert_to_txt_path(self, image_path):# 使用正则表达式匹配文件名中的点和扩展名,并替换为'.txt'label_path = re.sub(r'\.[^.]+?$', '.txt', image_path)return label_pathdef __len__(self):return len(self.imgs)root_dir = "dataset/train"
ants_image_dir = "ants_image"
bees_image_dir = "bees_image"
ants_label_dir = "ants_label"
bees_label_dir = "bees_label"
ants_dataset = MyData(root_dir, ants_image_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_image_dir, bees_label_dir)train_dataset = ants_dataset + bees_datasetimg, target = train_dataset[0]
transform = torchvision.transforms.ToTensor()
print(transform(img).shape)
print(target)
我们使用dataloader来读取这个数据集,我们需要对jpg格式的dataset进行处理,将其转换为相同大小的tensor,再读取:
import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoaderclass MyData(Dataset):def __init__(self, root_dir, image_dir, label_dir):self.root_dir = root_dirself.image_dir = image_dirself.label_dir = label_dirself.image_path = os.path.join(self.root_dir, self.image_dir)self.label_path = os.path.join(self.root_dir, self.label_dir)self.imgs = os.listdir(self.image_path)self.labels = os.listdir(self.label_path)def __getitem__(self, item):img_name = self.imgs[item]img_item_path = os.path.join(self.image_path, img_name)label_item_path = os.path.join(self.label_path, self.convert_to_txt_path(img_name))img = Image.open(img_item_path)transcompose = torchvision.transforms.Compose([torchvision.transforms.Resize((300, 300)), torchvision.transforms.ToTensor()])img = transcompose(img)with open(label_item_path, 'r') as f:label = f.read().strip()return img, labeldef convert_to_txt_path(self, image_path):# 使用正则表达式匹配文件名中的点和扩展名,并替换为'.txt'label_path = re.sub(r'\.[^.]+?$', '.txt', image_path)return label_pathdef __len__(self):return len(self.imgs)root_dir = "dataset/train"
ants_image_dir = "ants_image"
bees_image_dir = "bees_image"
ants_label_dir = "ants_label"
bees_label_dir = "bees_label"
ants_dataset = MyData(root_dir, ants_image_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_image_dir, bees_label_dir)train_dataset = ants_dataset + bees_datasetimg, target = train_dataset[0]
print(img.shape)
print(target)train_dataloader = DataLoader(train_dataset, batch_size=64, drop_last=True)
for data in train_dataloader:try:imgs, target = dataexcept Exception as e:print(f"跳过异常文件: {e}")
使用公开数据集的示例如下:
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())test_loader = DataLoader(test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)writer = SummaryWriter("dataloader")
for epoch in range(2):step = 0for data in test_loader:imgs, targets = data# print(imgs.shape)# print(targets)writer.add_images("Epoch: {}".format(epoch), imgs, step)step = step + 1writer.close()
损失函数
Loss的用法实际上就两行代码的事情,以下是示例:
import torch
from torch.nn import L1Loss, MSELoss
from torch import nninputs = torch.tensor([1, 2, 3], dtype=torch.float)
targets = torch.tensor([1, 2, 5], dtype=torch.float)inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))loss = L1Loss(reduction='sum')
result = loss(inputs, targets)loss_mse = MSELoss()
result_mse = loss_mse(inputs, targets)print(result)
print(result_mse)x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)
优化器
优化器的使用也很简单,但要注意,在每一步训练之前都需要用optim.zero_grad()将梯度置零,避免梯度累加造成问题,用loss.backward()得到梯度以后用optim.step()更新参数
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=1)class Network(nn.Module):def __init__(self):super().__init__()self.model1 = Sequential(Conv2d(3, 32,5, padding=2),MaxPool2d(2),Conv2d(32, 32,5, padding=2),MaxPool2d(2),Conv2d(32, 64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss()
network = Network()
optim = torch.optim.SGD(network.parameters(), lr=0.01)for epoch in range(20):running_loss = 0.0for data in dataloader:imgs, targets = dataoutputs = network(imgs)result_loss = loss(outputs, targets)optim.zero_grad()result_loss.backward()optim.step()running_loss = running_loss + result_lossprint(running_loss)
gpu手写和预测一个模型
gpu写模型
这里采用to(device)的方式使用gpu,对模型、损失函数和读数据部分使用to(device)调用gpu,其他和cpu并无区别:
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)# length
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为: {}".format(train_data_size))
print(f"测试数据集的长度为: {test_data_size}")# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)# 创建网络模型
# 搭建神经网络
class Network(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xnetwork = Network()
network.to(device)# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(network.parameters(), lr=learning_rate)# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 30# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time()
for i in range(epoch):print("-----------第 {} 轮训练开始----------".format(i+1))# 训练步骤开始network.train()for data in train_dataloader:imgs, targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = network(imgs)loss = loss_fn(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step = total_train_step + 1if total_train_step % 100 == 0:end_time = time.time()print(end_time - start_time)print("训练次数: {}, loss: {}".format(total_train_step, loss.item()))writer.add_scalar("train_loss", loss.item(), total_train_step)# 测试步骤开始network.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs, targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = network(imgs)loss = loss_fn(outputs, targets)total_test_loss = total_test_loss + lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy = total_accuracy + accuracyprint("整体测试集上的Loss: {}".format(total_test_loss))print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)total_test_step = total_test_step + 1torch.save(network, "network_{}.pth".format(i))print("模型已保存")writer.close()
gpu预测模型
把读取到的模型和数据用to(device)设置成gpu运行
import torch
import torchvision.transforms
from PIL import Image
from torch import nn# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
img_path = "dog.png"
image = Image.open(img_path)
print(image)transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)# 搭建神经网络
class Network(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xmodel = torch.load("network_29.pth").to(device)
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
image = image.to(device)
model.eval()
with torch.no_grad():output = model(image)
print(output)print(output.argmax(1))
相关文章:
Pytorch入门需要达到的效果
会搭建深度学习环境和依赖包安装 使用Anaconda创建环境、在pytorch官网安装pytorch、安装依赖包 会使用常见操作,例如matmul,sigmoid,softmax,relu,linear matmul操作见文章torch.matmul()的用法 sigmoid࿰…...
数据结构的快速排序(c语言版)
一.快速排序的概念 1.快排的基本概念 快速排序是一种常用的排序算法,它是基于分治策略的一种高效排序算法。它的基本思想如下: 从数列中挑出一个元素作为基准(pivot)。将所有小于基准值的元素放在基准前面,所有大于基准值的元素放在基准后面。这个过程称为分区(partition)操作…...
数据结构基础篇(4)
十六.循环链表 概念 循环链表是一种头尾相接的链表(最后一个结点的指针域指向头结点,整个链表形成一个环)优点 从表任一结点出发均可找到表中其他结点判断终止 由于循环链表中没有NULL指针,所以涉及遍历操作时,终止条…...
使用cad绘制一个螺旋输送机
1、第一步,绘制一个矩形 2、使用绘图中的样条线拟合曲线,绘制螺旋线。 绘制时使用上下辅助线、阵列工具绘制多个竖线保证样条线顶点在同一高度。 3、调整矩形右侧的两个顶点,使其变形。 矩形1和矩形2连接时,使用blend命令&#…...
迭代器模式(行为型)
目录 一、前言 二、迭代器模式 三、总结 一、前言 迭代器模式(Iterator Pattern)是一种行为型设计模式,提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象的内部表示。总的来说就是分离了集合对象的遍历行为,抽象出…...
Django——Admin站点(Python)
#前言: 该博客为小编Django基础知识操作博客的最后一篇,主要讲解了关于Admin站点的一些基本操作,小编会继续尽力更新一些优质文章,同时欢迎大家点赞和收藏,也欢迎大家关注等待后续文章。 一、简介: Djan…...
React 组件通信
1.从父组件向子组件传递参数: 父组件可以通过props将数据传递给子组件。子组件通过接收props来获取这些数据。 // 父组件 const ParentComponent () > {const data Hello, Child!;return <ChildComponent childData{data} />; }; // 子组件 const ChildCompone…...
【再探】设计模式—访问者模式、策略模式及状态模式
访问者模式是用于访问复杂数据结构的元素,对不同的元素执行不同的操作。策略模式是对于具有多种实现的算法,在运行过程中可动态选择使用哪种具体的实现。状态模式是用于具有不同状态的对象,状态之间可以转换,且不同状态下对象的行…...
新人硬件工程师,工作中遇到的问题list
新人硬件工程师能够通过面试,已经证明是能够胜任硬件工程师职责,当然胜任的时间会延迟,而不是当下,为什么呢?因为学校学习和公司做产品,两者之间有差异,会需要适应期。今天来看看新人硬件工程师…...
如何在Linux系统中搭建Zookeeper集群
一、概述 ZooKeeper是一个开源的且支持分布式部署的应用程序,是Google的Chubby一个开源的实现;它为分布式应用提供了一致性服务支持,包括:配置维护、域名服务、分布式同步、组服务等。 官网:https://zookeeper.apach…...
C++:vector的模拟实现
hello,各位小伙伴,本篇文章跟大家一起学习《C:vector的模拟实现》,感谢大家对我上一篇的支持,如有什么问题,还请多多指教 ! 如果本篇文章对你有帮助,还请各位点点赞!&…...
QT系列教程(5) 模态对话框消息传递
模态对话框接受和拒绝消息 我们创建一个模态对话框,调用exec函数后可以根据其返回值进行不同的处理,exec的返回值有两种,Qt的官方文档记录的为 QDialog::Accepted QDialog::RejectedAccepted 表示接受消息, Rejected表示拒绝消息…...
Linux学习笔记(清晰且清爽)
本文首次发布于个人博客 想要获得最佳的阅读体验(无广告且清爽),请访问本篇笔记 Linux安装 关于安装这里就不过多介绍了,安装版本是CentOS 7,详情安装步骤见下述博客在VMware中安装CentOS7(超详细的图文教…...
2.5Bump Mapping 凹凸映射
一、Bump Mapping 介绍 我们想要在屏幕上绘制物体的细节,从尺度上讲,一个物体的细节分为:宏观、中观、微观宏观尺度中其特征会覆盖多个像素,中观尺度只覆盖几个像素,微观尺度的特征就会小于一个像素宏观尺度是由顶点或…...
数字化前沿:Web3如何引领未来技术演进
在当今数字化时代,随着技术的不断发展和创新,Web3作为一种新兴的互联网范式,正逐渐成为数字化前沿的代表。Web3以其去中心化、加密安全的特性,正在引领着未来技术的演进,为全球范围内的科技创新带来了新的可能性和机遇…...
【kubernetes】探索k8s集群的存储卷、pvc和pv
目录 一、emptyDir存储卷 1.1 特点 1.2 用途 1.3部署 二、hostPath存储卷 2.1部署 2.1.1在 node01 节点上创建挂载目录 2.1.2在 node02 节点上创建挂载目录 2.1.3创建 Pod 资源 2.1.4访问测试 2.2 特点 2.3 用途 三、nfs共享存储卷 3.1特点 3.2用途 3.3部署 …...
UI线程和工作线程
引用:windows程序员面试指南 工作线程 只处理逻辑的线程,例如:启动一个线程,用来做一个复杂的计算,计算完成之后,此线程就自动退出,这种线程称为工作线程 UI线程 Windows应用程序一般由窗口…...
RandLA-Net 训练自定义数据集
https://arxiv.org/abs/1911.11236 搭建训练环境 git clone https://github.com/QingyongHu/RandLA-Net.git搭建 python 环境 , 这里我用的 3.9conda create -n randlanet python3.9 source activate randlanet pip install tensorflow2.15.0 -i https://pypi.tuna.tsinghua.e…...
洛谷 B3642:二叉树的遍历 ← 结构体方法 链式前向星方法
【题目来源】https://www.luogu.com.cn/problem/B3642【题目描述】 有一个 n(n≤10^6) 个结点的二叉树。给出每个结点的两个子结点编号(均不超过 n),建立一棵二叉树(根结点的编号为 1),如果是叶子结点&…...
飞腾+FPGA多U多串全国产工控主机
飞腾多U多串工控主机基于国产化飞腾高性能8核D2000处理器平台的国产自主可控解决方案,搭载国产化固件,支持UOS、银河麒麟等国产操作系统,满足金融系统安全运算需求,实现从硬件、操作系统到应用的完全国产、自主、可控,是国产金融信…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
