当前位置: 首页 > news >正文

Pytorch入门需要达到的效果

会搭建深度学习环境和依赖包安装

使用Anaconda创建环境、在pytorch官网安装pytorch、安装依赖包

会使用常见操作,例如matmulsigmoidsoftmaxrelulinear

matmul操作见文章torch.matmul()的用法
sigmoidsoftmaxrelu都是常用的激活函数,linear是线性层:

from torch import nnclass Network(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Sigmoid(),nn.Softmax(),nn.ReLU(),nn.Linear(1024, 64))

datasetdataloader,损失函数,优化器的使用

datasetdataloader

官方文档是这么写的:
在这里插入图片描述
当我们自定义一个dataset的时候,需要继承Dataset,重写__getitem__()方法,也可以重写__len__()方法,下面是一个例子,我们的数据集存放成这种形式,每一个image图片都对应一个相同名称的label文件,如0013035.jpg0013035.txt就分别是一个图片和它的label
在这里插入图片描述

import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoaderclass MyData(Dataset):def __init__(self, root_dir, image_dir, label_dir):self.root_dir = root_dirself.image_dir = image_dirself.label_dir = label_dirself.image_path = os.path.join(self.root_dir, self.image_dir)self.label_path = os.path.join(self.root_dir, self.label_dir)self.imgs = os.listdir(self.image_path)self.labels = os.listdir(self.label_path)def __getitem__(self, item):img_name = self.imgs[item]img_item_path = os.path.join(self.image_path, img_name)label_item_path = os.path.join(self.label_path, self.convert_to_txt_path(img_name))img = Image.open(img_item_path)with open(label_item_path, 'r') as f:label = f.read().strip()return img, labeldef convert_to_txt_path(self, image_path):# 使用正则表达式匹配文件名中的点和扩展名,并替换为'.txt'label_path = re.sub(r'\.[^.]+?$', '.txt', image_path)return label_pathdef __len__(self):return len(self.imgs)root_dir = "dataset/train"
ants_image_dir = "ants_image"
bees_image_dir = "bees_image"
ants_label_dir = "ants_label"
bees_label_dir = "bees_label"
ants_dataset = MyData(root_dir, ants_image_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_image_dir, bees_label_dir)train_dataset = ants_dataset + bees_datasetimg, target = train_dataset[0]
transform = torchvision.transforms.ToTensor()
print(transform(img).shape)
print(target)

我们使用dataloader来读取这个数据集,我们需要对jpg格式的dataset进行处理,将其转换为相同大小的tensor,再读取:

import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoaderclass MyData(Dataset):def __init__(self, root_dir, image_dir, label_dir):self.root_dir = root_dirself.image_dir = image_dirself.label_dir = label_dirself.image_path = os.path.join(self.root_dir, self.image_dir)self.label_path = os.path.join(self.root_dir, self.label_dir)self.imgs = os.listdir(self.image_path)self.labels = os.listdir(self.label_path)def __getitem__(self, item):img_name = self.imgs[item]img_item_path = os.path.join(self.image_path, img_name)label_item_path = os.path.join(self.label_path, self.convert_to_txt_path(img_name))img = Image.open(img_item_path)transcompose = torchvision.transforms.Compose([torchvision.transforms.Resize((300, 300)), torchvision.transforms.ToTensor()])img = transcompose(img)with open(label_item_path, 'r') as f:label = f.read().strip()return img, labeldef convert_to_txt_path(self, image_path):# 使用正则表达式匹配文件名中的点和扩展名,并替换为'.txt'label_path = re.sub(r'\.[^.]+?$', '.txt', image_path)return label_pathdef __len__(self):return len(self.imgs)root_dir = "dataset/train"
ants_image_dir = "ants_image"
bees_image_dir = "bees_image"
ants_label_dir = "ants_label"
bees_label_dir = "bees_label"
ants_dataset = MyData(root_dir, ants_image_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_image_dir, bees_label_dir)train_dataset = ants_dataset + bees_datasetimg, target = train_dataset[0]
print(img.shape)
print(target)train_dataloader = DataLoader(train_dataset, batch_size=64, drop_last=True)
for data in train_dataloader:try:imgs, target = dataexcept Exception as e:print(f"跳过异常文件:  {e}")

使用公开数据集的示例如下:

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())test_loader = DataLoader(test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)writer = SummaryWriter("dataloader")
for epoch in range(2):step = 0for data in test_loader:imgs, targets = data# print(imgs.shape)# print(targets)writer.add_images("Epoch: {}".format(epoch), imgs, step)step = step + 1writer.close()

损失函数

Loss的用法实际上就两行代码的事情,以下是示例:

import torch
from torch.nn import L1Loss, MSELoss
from torch import nninputs = torch.tensor([1, 2, 3], dtype=torch.float)
targets = torch.tensor([1, 2, 5], dtype=torch.float)inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))loss = L1Loss(reduction='sum')
result = loss(inputs, targets)loss_mse = MSELoss()
result_mse = loss_mse(inputs, targets)print(result)
print(result_mse)x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)

优化器

优化器的使用也很简单,但要注意,在每一步训练之前都需要用optim.zero_grad()将梯度置零,避免梯度累加造成问题,用loss.backward()得到梯度以后用optim.step()更新参数

import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=1)class Network(nn.Module):def __init__(self):super().__init__()self.model1 = Sequential(Conv2d(3, 32,5, padding=2),MaxPool2d(2),Conv2d(32, 32,5, padding=2),MaxPool2d(2),Conv2d(32, 64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss()
network = Network()
optim = torch.optim.SGD(network.parameters(), lr=0.01)for epoch in range(20):running_loss = 0.0for data in dataloader:imgs, targets = dataoutputs = network(imgs)result_loss = loss(outputs, targets)optim.zero_grad()result_loss.backward()optim.step()running_loss = running_loss + result_lossprint(running_loss)

gpu手写和预测一个模型

gpu写模型

这里采用to(device)的方式使用gpu,对模型、损失函数和读数据部分使用to(device)调用gpu,其他和cpu并无区别:

import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)# length
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为: {}".format(train_data_size))
print(f"测试数据集的长度为: {test_data_size}")# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)# 创建网络模型
# 搭建神经网络
class Network(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xnetwork = Network()
network.to(device)# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(network.parameters(), lr=learning_rate)# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 30# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time()
for i in range(epoch):print("-----------第 {} 轮训练开始----------".format(i+1))# 训练步骤开始network.train()for data in train_dataloader:imgs, targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = network(imgs)loss = loss_fn(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step = total_train_step + 1if total_train_step % 100 == 0:end_time = time.time()print(end_time - start_time)print("训练次数: {}, loss: {}".format(total_train_step, loss.item()))writer.add_scalar("train_loss", loss.item(), total_train_step)# 测试步骤开始network.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs, targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = network(imgs)loss = loss_fn(outputs, targets)total_test_loss = total_test_loss + lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy = total_accuracy + accuracyprint("整体测试集上的Loss: {}".format(total_test_loss))print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)total_test_step = total_test_step + 1torch.save(network, "network_{}.pth".format(i))print("模型已保存")writer.close()

gpu预测模型

把读取到的模型和数据用to(device)设置成gpu运行

import torch
import torchvision.transforms
from PIL import Image
from torch import nn# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
img_path = "dog.png"
image = Image.open(img_path)
print(image)transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)# 搭建神经网络
class Network(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xmodel = torch.load("network_29.pth").to(device)
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
image = image.to(device)
model.eval()
with torch.no_grad():output = model(image)
print(output)print(output.argmax(1))

相关文章:

Pytorch入门需要达到的效果

会搭建深度学习环境和依赖包安装 使用Anaconda创建环境、在pytorch官网安装pytorch、安装依赖包 会使用常见操作,例如matmul,sigmoid,softmax,relu,linear matmul操作见文章torch.matmul()的用法 sigmoid&#xff0…...

数据结构的快速排序(c语言版)

一.快速排序的概念 1.快排的基本概念 快速排序是一种常用的排序算法,它是基于分治策略的一种高效排序算法。它的基本思想如下: 从数列中挑出一个元素作为基准(pivot)。将所有小于基准值的元素放在基准前面,所有大于基准值的元素放在基准后面。这个过程称为分区(partition)操作…...

数据结构基础篇(4)

十六.循环链表 概念 循环链表是一种头尾相接的链表(最后一个结点的指针域指向头结点,整个链表形成一个环)优点 从表任一结点出发均可找到表中其他结点判断终止 由于循环链表中没有NULL指针,所以涉及遍历操作时,终止条…...

使用cad绘制一个螺旋输送机

1、第一步,绘制一个矩形 2、使用绘图中的样条线拟合曲线,绘制螺旋线。 绘制时使用上下辅助线、阵列工具绘制多个竖线保证样条线顶点在同一高度。 3、调整矩形右侧的两个顶点,使其变形。 矩形1和矩形2连接时,使用blend命令&#…...

迭代器模式(行为型)

目录 一、前言 二、迭代器模式 三、总结 一、前言 迭代器模式(Iterator Pattern)是一种行为型设计模式,提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象的内部表示。总的来说就是分离了集合对象的遍历行为,抽象出…...

Django——Admin站点(Python)

#前言: 该博客为小编Django基础知识操作博客的最后一篇,主要讲解了关于Admin站点的一些基本操作,小编会继续尽力更新一些优质文章,同时欢迎大家点赞和收藏,也欢迎大家关注等待后续文章。 一、简介: Djan…...

React 组件通信

1.从父组件向子组件传递参数: 父组件可以通过props将数据传递给子组件。子组件通过接收props来获取这些数据。 // 父组件 const ParentComponent () > {const data Hello, Child!;return <ChildComponent childData{data} />; }; ​ // 子组件 const ChildCompone…...

【再探】设计模式—访问者模式、策略模式及状态模式

访问者模式是用于访问复杂数据结构的元素&#xff0c;对不同的元素执行不同的操作。策略模式是对于具有多种实现的算法&#xff0c;在运行过程中可动态选择使用哪种具体的实现。状态模式是用于具有不同状态的对象&#xff0c;状态之间可以转换&#xff0c;且不同状态下对象的行…...

新人硬件工程师,工作中遇到的问题list

新人硬件工程师能够通过面试&#xff0c;已经证明是能够胜任硬件工程师职责&#xff0c;当然胜任的时间会延迟&#xff0c;而不是当下&#xff0c;为什么呢&#xff1f;因为学校学习和公司做产品&#xff0c;两者之间有差异&#xff0c;会需要适应期。今天来看看新人硬件工程师…...

如何在Linux系统中搭建Zookeeper集群

一、概述 ZooKeeper是一个开源的且支持分布式部署的应用程序&#xff0c;是Google的Chubby一个开源的实现&#xff1b;它为分布式应用提供了一致性服务支持&#xff0c;包括&#xff1a;配置维护、域名服务、分布式同步、组服务等。 官网&#xff1a;https://zookeeper.apach…...

C++:vector的模拟实现

hello&#xff0c;各位小伙伴&#xff0c;本篇文章跟大家一起学习《C&#xff1a;vector的模拟实现》&#xff0c;感谢大家对我上一篇的支持&#xff0c;如有什么问题&#xff0c;还请多多指教 &#xff01; 如果本篇文章对你有帮助&#xff0c;还请各位点点赞&#xff01;&…...

QT系列教程(5) 模态对话框消息传递

模态对话框接受和拒绝消息 我们创建一个模态对话框&#xff0c;调用exec函数后可以根据其返回值进行不同的处理&#xff0c;exec的返回值有两种&#xff0c;Qt的官方文档记录的为 QDialog::Accepted QDialog::RejectedAccepted 表示接受消息&#xff0c; Rejected表示拒绝消息…...

Linux学习笔记(清晰且清爽)

本文首次发布于个人博客 想要获得最佳的阅读体验&#xff08;无广告且清爽&#xff09;&#xff0c;请访问本篇笔记 Linux安装 关于安装这里就不过多介绍了&#xff0c;安装版本是CentOS 7&#xff0c;详情安装步骤见下述博客在VMware中安装CentOS7&#xff08;超详细的图文教…...

2.5Bump Mapping 凹凸映射

一、Bump Mapping 介绍 我们想要在屏幕上绘制物体的细节&#xff0c;从尺度上讲&#xff0c;一个物体的细节分为&#xff1a;宏观、中观、微观宏观尺度中其特征会覆盖多个像素&#xff0c;中观尺度只覆盖几个像素&#xff0c;微观尺度的特征就会小于一个像素宏观尺度是由顶点或…...

数字化前沿:Web3如何引领未来技术演进

在当今数字化时代&#xff0c;随着技术的不断发展和创新&#xff0c;Web3作为一种新兴的互联网范式&#xff0c;正逐渐成为数字化前沿的代表。Web3以其去中心化、加密安全的特性&#xff0c;正在引领着未来技术的演进&#xff0c;为全球范围内的科技创新带来了新的可能性和机遇…...

【kubernetes】探索k8s集群的存储卷、pvc和pv

目录 一、emptyDir存储卷 1.1 特点 1.2 用途 1.3部署 二、hostPath存储卷 2.1部署 2.1.1在 node01 节点上创建挂载目录 2.1.2在 node02 节点上创建挂载目录 2.1.3创建 Pod 资源 2.1.4访问测试 2.2 特点 2.3 用途 三、nfs共享存储卷 3.1特点 3.2用途 3.3部署 …...

UI线程和工作线程

引用&#xff1a;windows程序员面试指南 工作线程 只处理逻辑的线程&#xff0c;例如&#xff1a;启动一个线程&#xff0c;用来做一个复杂的计算&#xff0c;计算完成之后&#xff0c;此线程就自动退出&#xff0c;这种线程称为工作线程 UI线程 Windows应用程序一般由窗口…...

RandLA-Net 训练自定义数据集

https://arxiv.org/abs/1911.11236 搭建训练环境 git clone https://github.com/QingyongHu/RandLA-Net.git搭建 python 环境 , 这里我用的 3.9conda create -n randlanet python3.9 source activate randlanet pip install tensorflow2.15.0 -i https://pypi.tuna.tsinghua.e…...

洛谷 B3642:二叉树的遍历 ← 结构体方法 链式前向星方法

【题目来源】https://www.luogu.com.cn/problem/B3642【题目描述】 有一个 n(n≤10^6) 个结点的二叉树。给出每个结点的两个子结点编号&#xff08;均不超过 n&#xff09;&#xff0c;建立一棵二叉树&#xff08;根结点的编号为 1&#xff09;&#xff0c;如果是叶子结点&…...

飞腾+FPGA多U多串全国产工控主机

飞腾多U多串工控主机基于国产化飞腾高性能8核D2000处理器平台的国产自主可控解决方案&#xff0c;搭载国产化固件,支持UOS、银河麒麟等国产操作系统&#xff0c;满足金融系统安全运算需求&#xff0c;实现从硬件、操作系统到应用的完全国产、自主、可控&#xff0c;是国产金融信…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

职坐标物联网全栈开发全流程解析

物联网全栈开发涵盖从物理设备到上层应用的完整技术链路&#xff0c;其核心流程可归纳为四大模块&#xff1a;感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性&#xff0c;例如传感器选型需平衡精度与…...

基于Java项目的Karate API测试

Karate 实现了可以只编写Feature 文件进行测试,但是对于熟悉Java语言的开发或是测试人员,可以通过编程方式集成 Karate 丰富的自动化和数据断言功能。 本篇快速介绍在Java Maven项目中编写和运行测试的示例。 创建Maven项目 最简单的创建项目的方式就是创建一个目录,里面…...

VSCode 没有添加Windows右键菜单

关键字&#xff1a;VSCode&#xff1b;Windows右键菜单&#xff1b;注册表。 文章目录 前言一、工程环境二、配置流程1.右键文件打开2.右键文件夹打开3.右键空白处打开文件夹 三、测试总结 前言 安装 VSCode 时没有注意&#xff0c;实际使用的时候发现 VSCode 在 Windows 菜单栏…...