当前位置: 首页 > news >正文

模糊C均值(FCM)算法更新公式推导

模糊C均值(FCM)算法更新公式推导

目标函数

FCM的目标函数为:

J m = ∑ i = 1 n ∑ j = 1 k u i j m ∥ x i − c j ∥ 2 J_m = \sum_{i=1}^n \sum_{j=1}^k u_{ij}^m \|x_i - c_j\|^2 Jm=i=1nj=1kuijmxicj2

其中:

  • x i x_i xi 是数据点, i = 1 , 2 , … , n i = 1, 2, \ldots, n i=1,2,,n
  • c j c_j cj 是第 j j j 个簇的中心, j = 1 , 2 , … , k j = 1, 2, \ldots, k j=1,2,,k
  • u i j u_{ij} uij 是数据点 x i x_i xi 属于第 j j j 个簇的隶属度。
  • m m m 是模糊度参数,通常 m > 1 m > 1 m>1

更新公式推导过程

1. 定义目标函数

J m = ∑ i = 1 n ∑ j = 1 k u i j m ∥ x i − c j ∥ 2 J_m = \sum_{i=1}^n \sum_{j=1}^k u_{ij}^m \|x_i - c_j\|^2 Jm=i=1nj=1kuijmxicj2

2. 引入约束条件

∑ j = 1 k u i j = 1 ∀ i \sum_{j=1}^k u_{ij} = 1 \quad \forall i j=1kuij=1i

使用拉格朗日乘数法,引入拉格朗日乘子 λ i \lambda_i λi,构造拉格朗日函数:

L = ∑ i = 1 n ∑ j = 1 k u i j m ∥ x i − c j ∥ 2 + ∑ i = 1 n λ i ( ∑ j = 1 k u i j − 1 ) \mathcal{L} = \sum_{i=1}^n \sum_{j=1}^k u_{ij}^m \|x_i - c_j\|^2 + \sum_{i=1}^n \lambda_i \left( \sum_{j=1}^k u_{ij} - 1 \right) L=i=1nj=1kuijmxicj2+i=1nλi(j=1kuij1)

3. 对 u i j u_{ij} uij 求偏导数并设为零

对拉格朗日函数 L \mathcal{L} L u i j u_{ij} uij 的偏导数并设为零:

∂ L ∂ u i j = m u i j m − 1 ∥ x i − c j ∥ 2 + λ i = 0 \frac{\partial \mathcal{L}}{\partial u_{ij}} = m u_{ij}^{m-1} \|x_i - c_j\|^2 + \lambda_i = 0 uijL=muijm1xicj2+λi=0

解这个方程得到:

u i j m − 1 = − λ i m ∥ x i − c j ∥ 2 u_{ij}^{m-1} = -\frac{\lambda_i}{m \|x_i - c_j\|^2} uijm1=mxicj2λi

为了保证 (u_{ij}) 非负,设 λ i = − m ζ \lambda_i = -m\zeta λi=mζ,则:

u i j m − 1 = ζ ∥ x i − c j ∥ 2 u_{ij}^{m-1} = \frac{\zeta}{\|x_i - c_j\|^2} uijm1=xicj2ζ
即:

u i j = ( ζ ∥ x i − c j ∥ 2 ) 1 m − 1 u_{ij} = \left( \frac{\zeta}{\|x_i - c_j\|^2} \right)^{\frac{1}{m-1}} uij=(xicj2ζ)m11

4. 求解拉格朗日乘子 ζ \zeta ζ

利用约束条件 ∑ j = 1 k u i j = 1 \sum_{j=1}^k u_{ij} = 1 j=1kuij=1

∑ j = 1 k ( ζ ∥ x i − c j ∥ 2 ) 1 m − 1 = 1 \sum_{j=1}^k \left( \frac{\zeta}{\|x_i - c_j\|^2} \right)^{\frac{1}{m-1}} = 1 j=1k(xicj2ζ)m11=1

解这个方程得到:

ζ = ( ∑ j = 1 k ( 1 ∥ x i − c j ∥ 2 ) 1 m − 1 ) 1 − m \zeta = \left( \sum_{j=1}^k \left( \frac{1}{\|x_i - c_j\|^2} \right)^{\frac{1}{m-1}} \right)^{1-m} ζ=(j=1k(xicj21)m11)1m

代入 u i j u_{ij} uij 的表达式,得到隶属度更新公式:

u i j = 1 ∑ l = 1 k ( ∥ x i − c j ∥ ∥ x i − c l ∥ ) 2 m − 1 u_{ij} = \frac{1}{\sum_{l=1}^k \left( \frac{\|x_i - c_j\|}{\|x_i - c_l\|} \right)^{\frac{2}{m-1}}} uij=l=1k(xiclxicj)m121

5. 对簇中心 c j c_j cj 求偏导数并设为零

对目标函数 J m J_m Jm c j c_j cj 求偏导数并设为零:

∂ J m ∂ c j = ∑ i = 1 n u i j m ( c j − x i ) = 0 \frac{\partial J_m}{\partial c_j} = \sum_{i=1}^n u_{ij}^m (c_j - x_i) = 0 cjJm=i=1nuijm(cjxi)=0

解这个方程得到:

∑ i = 1 n u i j m c j = ∑ i = 1 n u i j m x i \sum_{i=1}^n u_{ij}^m c_j = \sum_{i=1}^n u_{ij}^m x_i i=1nuijmcj=i=1nuijmxi

c j = ∑ i = 1 n u i j m x i ∑ i = 1 n u i j m c_j = \frac{\sum_{i=1}^n u_{ij}^m x_i}{\sum_{i=1}^n u_{ij}^m} cj=i=1nuijmi=1nuijmxi

总结

通过上述推导过程,我们得到了FCM算法的更新公式:

  • 隶属度更新公式:

u i j = 1 ∑ l = 1 k ( ∥ x i − c j ∥ ∥ x i − c l ∥ ) 2 m − 1 u_{ij} = \frac{1}{\sum_{l=1}^k \left(\frac{\|x_i - c_j\|}{\|x_i - c_l\|}\right)^{\frac{2}{m-1}}} uij=l=1k(xiclxicj)m121

  • 簇中心更新公式:

c j = ∑ i = 1 n u i j m x i ∑ i = 1 n u i j m c_j = \frac{\sum_{i=1}^n u_{ij}^m x_i}{\sum_{i=1}^n u_{ij}^m} cj=i=1nuijmi=1nuijmxi

这些公式在每次迭代中交替更新,直到目标函数收敛。

相关文章:

模糊C均值(FCM)算法更新公式推导

模糊C均值(FCM)算法更新公式推导 目标函数 FCM的目标函数为: J m ∑ i 1 n ∑ j 1 k u i j m ∥ x i − c j ∥ 2 J_m \sum_{i1}^n \sum_{j1}^k u_{ij}^m \|x_i - c_j\|^2 Jm​i1∑n​j1∑k​uijm​∥xi​−cj​∥2 其中: …...

金融创新浪潮下的拆分盘投资探索

随着数字化时代的步伐加速,金融领域正经历着前所未有的变革。在众多金融创新中,拆分盘作为一种新兴的投资模式,以其独特的增长机制,吸引了投资者的广泛关注。本文将对拆分盘的投资逻辑进行深入剖析,并结合具体案例&…...

一份不知道哪里来的第十五届国赛模拟题

这是一个不知道来源的模拟题目,没有完全完成,只作代码记录,不作分析和展示,极其冗长,但里面有长按短按双击的复合,可以看看。 目录 题目代码底层驱动主程序核心代码关键:双击单击长按复合代码 …...

机器人动力学模型与MATLAB仿真

机器人刚体动力学由以下方程控制!!! startup_rvc mdl_puma560 p560.dyn 提前计算出来这些“disturbance”,然后在控制环路中将它“抵消”(有时候也叫前馈控制) 求出所需要的力矩,其中M项代表克服…...

SAPUI5基础知识3 - 引导过程(Bootstrap)

1. 背景 在上一篇博客中,我们已经建立出了第一个SAPUI5项目,接下来,我们将为这个项目添加引导过程。 在动手练习之前,让我们先解释一下什么引导过程。 1.1 什么是引导过程? 在计算机科学中,引导过程也称…...

ABAP 借助公司封装的钉钉URL,封装的RFC给钉钉发送消息

FUNCTION ZRFC_BC_SMSSEND_DINGTALK. *"---------------------------------------------------------------------- *"*"本地接口: *" IMPORTING *" VALUE(DESTUSRID) TYPE CHAR255 *" VALUE(CONTENT) TYPE CHAR255 *&quo…...

登录校验及全局异常处理器

登录校验 会话技术 会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束.在一次会话中可以包含多次请求和响应会话跟踪:一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一浏览器,以便在同一次会话请求间共享数据会话跟踪方案 客户端…...

计算机视觉与模式识别实验1-2 图像的形态学操作

文章目录 🧡🧡实验流程🧡🧡1.图像膨胀2.图像腐蚀3.膨胀与腐蚀的综合使用4.对下面二值图像的目标提取骨架,并分析骨架结构。 🧡🧡全部代码🧡🧡 🧡&#x1f9e1…...

【前端每日基础】day31——uni-app

uni-app 开发详细介绍 基本概念 uni-app:uni-app 是一个使用 Vue.js 开发多端应用的框架,可以编译到微信小程序、支付宝小程序、百度小程序、字节跳动小程序、H5、App等多个平台。 跨平台:一次开发,多端部署。通过条件编译实现多…...

云动态摘要 2024-05-31

给您带来云厂商的最新动态,最新产品资讯和最新优惠更新。 最新优惠与活动 [1.5折起]年中盛惠--AI分会场 腾讯云 2024-05-30 人脸核身、语音识别、文字识别、数智人、腾讯混元等热门AI产品特惠,1.5折起 云服务器ECS试用产品续用 阿里云 2024-04-14 云…...

Oracle数据块如何存储真实数据

上周休假了几天,颓废了,没有输出。今天写一点内容。 先抛出一个问题。表中的数据在Oracle数据块中是如何存储的呢?今天简单说一下这个问题。通常数据库中的表会存储字符,数字,日期 这3种常见的数据类型。下面的例子就用这3种数据类型作说明 首先,Oracle数据块底层存储这…...

【WEB前端2024】开源智体世界:乔布斯3D纪念馆-第30课-门的移动动画

【WEB前端2024】开源智体世界:乔布斯3D纪念馆-第30课-门的移动动画 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎…...

智能化改造给企业带来的实际效果

1. 提高生产效率:通过自动化和智能化的生产线,减少人工操作,显著提升单位时间内的生产量。 2. 提升产品质量:智能化改造通过精确控制生产过程,减少人为错误,提高产品的一致性和可靠性。 3. 降低生产成本&am…...

深度学习-语言模型

深度学习-语言模型 统计语言模型神经网络语言模型语言模型的应用序列模型(Sequence Model)语言模型(Language Model)序列模型和语言模型的区别 语言模型(Language Model)是自然语言处理(NLP&…...

微型导轨在自动化制造中有哪些优势?

微型导轨在自动化制造中发挥重要作用,能够满足自动化设备制造中对精度要求较高的工艺环节。适用于自动装配线、自动检测设备和机器人操作等环节,推动了行业的进步与发展。那么,微型导轨在使用中有哪些优势呢? 1、精度高和稳定性强…...

探索气象数据的多维度三维可视化:PM2.5、风速与高度分析

探索气象数据的多维度可视化:PM2.5、风速与高度分析 摘要 在现代气象学中,数据可视化是理解复杂气象模式和趋势的关键工具。本文将介绍一种先进的数据可视化技术,它能够将PM2.5浓度、风速和高度等多维度数据以直观和动态的方式展现出来。 …...

【传知代码】双深度学习模型实现结直肠癌检测(论文复现)

前言:在医学领域,科技的进步一直是改变人类生活的关键驱动力之一。随着深度学习技术的不断发展,其在医学影像诊断领域的应用正日益受到关注。结直肠癌是一种常见但危害极大的恶性肿瘤,在早期发现和及时治疗方面具有重要意义。然而…...

平衡二叉树的应用举例

AVL 是一种自平衡二叉搜索树,其中任何节点的左右子树的高度之差不能超过 1。 AVL树的特点: 1、它遵循二叉搜索树的一般属性。 2、树的每个子树都是平衡的,即左右子树的高度之差最多为1。 3、当插入新节点时,树会自我平衡。因此…...

一键安装 HaloDB 之 Ansible for Halo

↑ 关注“少安事务所”公众号,欢迎⭐收藏,不错过精彩内容~ 前倾回顾 前面介绍了“光环”数据库的基本情况和安装办法。 哈喽,国产数据库!Halo DB! 三步走,Halo DB 安装指引 以及 HaloDB 的 Oracle 和 MySQL 兼容模式: …...

el-table的上下筛选功能

el-table的sort-change事件可以监听到筛选的事件&#xff1b; 会返回prop属性和order排序的顺序&#xff1b; html&#xff1a; <el-table :data"tableData" border style"width: 100%" :cell-style"{ textAlign: center }"header-cell-c…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...