如何构建最小堆?
方式1:上浮调整
/*** 上浮调整(小的上浮)*/
public static void smallUp1(int[] arr, int child) {int parent = (child - 1) / 2;while (0 < child && arr[child] < arr[parent]) { // 0 < child说明这个节点还是叶子arr[child] = arr[child] ^ arr[parent];arr[parent] = arr[child] ^ arr[parent];arr[child] = arr[child] ^ arr[parent];child = parent; // 父节点此时开始视为子节点parent = (child - 1) / 2; // 算父节点的父节点}
}
/*** 上浮调整(小的上浮)*/
public static void smallUp2(int[] arr, int child) {int parent = (child - 1) / 2;int baseVal = arr[child]; // 把处理的数据取出来while (0 < child && baseVal < arr[parent]) {arr[child] = arr[parent]; // 父节点值挪下来,父节点为baseVal备选位置child = parent;parent = (child - 1) / 2;}arr[child] = baseVal; // baseVal上浮不动了,所以落在当前子节点位置
}
方式2:下沉调整
/*** 下浮调整(大的下沉)** @param arr 待调整的堆* @param parent 要下沉的父节点* @param length 堆的有效大小*/
public static void bigDown1(int[] arr, int parent, int length) {int child = 2 * parent + 1;while (child < length) { // 范围内if (child + 1 < length && arr[child + 1] < arr[child]) { // 取出两个子节点值最小的那个child++;}if (arr[parent] <= arr[child]) { // 父节点比他们都小,则符合预期终止循环break;}arr[child] = arr[child] ^ arr[parent];arr[parent] = arr[child] ^ arr[parent];arr[child] = arr[child] ^ arr[parent];parent = child; // 此时子节点视为父节点继续下一步处理child = 2 * child + 1;}
}
/*** 下浮调整(大的下沉)** @param arr 待调整的堆* @param parent 要下沉的父节点* @param length 堆的有效大小*/
public static void bigDown2(int[] arr, int parent, int length) {int baseVal = arr[parent];int child = 2 * parent + 1;while (child < length) {if (child + 1 < length && arr[child + 1] < arr[child]) {child++;}if (baseVal <= arr[child]) {break;}arr[parent] = arr[child]; // 子节点小,则子节点位置上移parent = child;child = 2 * child + 1;}arr[parent] = baseVal; // baseVal下沉不动了,所以落在当前子节点位置
}
构建最小堆
int[] arr = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};System.out.println("原始数据:" + Arrays.toString(arr));
for (int i = arr.length - 1; i >= 0; i--) {smallUp1(arr, i);
}
System.out.println("上浮构建最小二叉堆:" + Arrays.toString(arr));int[] arr2 = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};
for (int i = arr2.length - 1; i >= 0; i--) {smallUp1(arr2, i);
}
System.out.println("上浮构建最小二叉堆:" + Arrays.toString(arr2));int[] arr11 = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};
for (int i = (arr11.length - 1) / 2; i >= 0; i--) {bigDown1(arr11, i, arr11.length);
}
System.out.println("下沉构建最小二叉堆:" + Arrays.toString(arr11));int[] arr22 = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};
for (int i = (arr22.length - 1) / 2; i >= 0; i--) {bigDown2(arr22, i, arr22.length);
}
System.out.println("下沉构建最小二叉堆:" + Arrays.toString(arr22));原始数据:[1, 3, 2, 9, 5, 7, 8, 6, 10, 0]
上浮构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
上浮构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
下沉构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
下沉构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
相关文章:
如何构建最小堆?
方式1:上浮调整 /*** 上浮调整(小的上浮)*/ public static void smallUp1(int[] arr, int child) {int parent (child - 1) / 2;while (0 < child && arr[child] < arr[parent]) { // 0 < child说明这个节点还是叶子arr[child] arr[child] ^ ar…...
基于Netty实现安全认证的WebSocket(wss)客户端
1.Netty服务端 服务端代码参考【基于Netty实现安全认证的WebSocket(wss)服务端-CSDN博客】 2.Netty客户端 客户端代码参考【基于Netty实现WebSocket客户端-CSDN博客】中两种都可以;这里用的是第一种。 新增SslHandler的代码: …...
代码随想录算法训练营第四十四天 | 01背包问题 二维、 01背包问题 一维、416. 分割等和子集
01背包问题 二维 代码随想录 视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili 1.dp数组定义 dp[i][j] 下标为[0,i]之间的物品&…...
redis常见使用场景
文章目录 redis常见使用场景全局ID位统计购物车用户消息时间线timeline抽奖商品筛选分布式锁限流redis实现计数器排行榜消息队列redis 如何实现延时队列 redis生产常用的场景 redis常见使用场景 Redis 是一种高性能的内存数据库,广泛应用于各种场景中。以下是 Redi…...
模糊C均值(FCM)算法更新公式推导
模糊C均值(FCM)算法更新公式推导 目标函数 FCM的目标函数为: J m ∑ i 1 n ∑ j 1 k u i j m ∥ x i − c j ∥ 2 J_m \sum_{i1}^n \sum_{j1}^k u_{ij}^m \|x_i - c_j\|^2 Jmi1∑nj1∑kuijm∥xi−cj∥2 其中: …...
金融创新浪潮下的拆分盘投资探索
随着数字化时代的步伐加速,金融领域正经历着前所未有的变革。在众多金融创新中,拆分盘作为一种新兴的投资模式,以其独特的增长机制,吸引了投资者的广泛关注。本文将对拆分盘的投资逻辑进行深入剖析,并结合具体案例&…...
一份不知道哪里来的第十五届国赛模拟题
这是一个不知道来源的模拟题目,没有完全完成,只作代码记录,不作分析和展示,极其冗长,但里面有长按短按双击的复合,可以看看。 目录 题目代码底层驱动主程序核心代码关键:双击单击长按复合代码 …...
机器人动力学模型与MATLAB仿真
机器人刚体动力学由以下方程控制!!! startup_rvc mdl_puma560 p560.dyn 提前计算出来这些“disturbance”,然后在控制环路中将它“抵消”(有时候也叫前馈控制) 求出所需要的力矩,其中M项代表克服…...
SAPUI5基础知识3 - 引导过程(Bootstrap)
1. 背景 在上一篇博客中,我们已经建立出了第一个SAPUI5项目,接下来,我们将为这个项目添加引导过程。 在动手练习之前,让我们先解释一下什么引导过程。 1.1 什么是引导过程? 在计算机科学中,引导过程也称…...
ABAP 借助公司封装的钉钉URL,封装的RFC给钉钉发送消息
FUNCTION ZRFC_BC_SMSSEND_DINGTALK. *"---------------------------------------------------------------------- *"*"本地接口: *" IMPORTING *" VALUE(DESTUSRID) TYPE CHAR255 *" VALUE(CONTENT) TYPE CHAR255 *&quo…...
登录校验及全局异常处理器
登录校验 会话技术 会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束.在一次会话中可以包含多次请求和响应会话跟踪:一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一浏览器,以便在同一次会话请求间共享数据会话跟踪方案 客户端…...
计算机视觉与模式识别实验1-2 图像的形态学操作
文章目录 🧡🧡实验流程🧡🧡1.图像膨胀2.图像腐蚀3.膨胀与腐蚀的综合使用4.对下面二值图像的目标提取骨架,并分析骨架结构。 🧡🧡全部代码🧡🧡 🧡🧡…...
【前端每日基础】day31——uni-app
uni-app 开发详细介绍 基本概念 uni-app:uni-app 是一个使用 Vue.js 开发多端应用的框架,可以编译到微信小程序、支付宝小程序、百度小程序、字节跳动小程序、H5、App等多个平台。 跨平台:一次开发,多端部署。通过条件编译实现多…...
云动态摘要 2024-05-31
给您带来云厂商的最新动态,最新产品资讯和最新优惠更新。 最新优惠与活动 [1.5折起]年中盛惠--AI分会场 腾讯云 2024-05-30 人脸核身、语音识别、文字识别、数智人、腾讯混元等热门AI产品特惠,1.5折起 云服务器ECS试用产品续用 阿里云 2024-04-14 云…...
Oracle数据块如何存储真实数据
上周休假了几天,颓废了,没有输出。今天写一点内容。 先抛出一个问题。表中的数据在Oracle数据块中是如何存储的呢?今天简单说一下这个问题。通常数据库中的表会存储字符,数字,日期 这3种常见的数据类型。下面的例子就用这3种数据类型作说明 首先,Oracle数据块底层存储这…...
【WEB前端2024】开源智体世界:乔布斯3D纪念馆-第30课-门的移动动画
【WEB前端2024】开源智体世界:乔布斯3D纪念馆-第30课-门的移动动画 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎…...
智能化改造给企业带来的实际效果
1. 提高生产效率:通过自动化和智能化的生产线,减少人工操作,显著提升单位时间内的生产量。 2. 提升产品质量:智能化改造通过精确控制生产过程,减少人为错误,提高产品的一致性和可靠性。 3. 降低生产成本&am…...
深度学习-语言模型
深度学习-语言模型 统计语言模型神经网络语言模型语言模型的应用序列模型(Sequence Model)语言模型(Language Model)序列模型和语言模型的区别 语言模型(Language Model)是自然语言处理(NLP&…...
微型导轨在自动化制造中有哪些优势?
微型导轨在自动化制造中发挥重要作用,能够满足自动化设备制造中对精度要求较高的工艺环节。适用于自动装配线、自动检测设备和机器人操作等环节,推动了行业的进步与发展。那么,微型导轨在使用中有哪些优势呢? 1、精度高和稳定性强…...
探索气象数据的多维度三维可视化:PM2.5、风速与高度分析
探索气象数据的多维度可视化:PM2.5、风速与高度分析 摘要 在现代气象学中,数据可视化是理解复杂气象模式和趋势的关键工具。本文将介绍一种先进的数据可视化技术,它能够将PM2.5浓度、风速和高度等多维度数据以直观和动态的方式展现出来。 …...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
