【数据结构】详解二叉树
文章目录
- 1.树的结构及概念
- 1.1树的概念
- 1.2树的相关结构概念
- 1.3树的表示
- 1.4树在实际中的应用
- 2.二叉树的结构及概念
- 2.1二叉树的概念
- 2.2特殊的二叉树
- 2.2.1满二叉树
- 2.2.2完全二叉树
- 2.3 二叉树的性质
- 2.4二叉树的存储结构
- 2.4.1顺序结构
- 2.4.2链表结构
1.树的结构及概念
1.1树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根结点没有前驱结点除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的
1.2树的相关结构概念

在一个树中,有下面几种结构概念:
结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6,我们用一张图来更好的了解:
叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I…等结点为叶结点
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G…等结点为分支结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
这里面的概念我们不需要全都记住,标黄的需要我们重点关注以下;
1.3树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。
我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{struct Node* firstChild1; // 第一个孩子结点 struct Node* pNextBrother; // 指向其下一个兄弟结点 DataType data; // 结点中的数据域
};

在这个方法中,我们用firstchild指针找当前节点的第一个孩子节点(A),再用pnextbrother指针找到后续的孩子节点(B,C)找完之后接着用firstchild找到D,然后重复上面的操作,直到找完为止;
1.4树在实际中的应用

2.二叉树的结构及概念
2.1二叉树的概念
二叉树(Binary Tree) 是由n个结点构成的有限集(n≥0),该集合:
- 或者为空;
- 由一个根结点加上两棵别称为左子树和右子树的二叉树组成;
由上图我们可以得知:
1.一个二叉树不存在度大于2的结点。
2.二是结点的子树有左右之分,不能随意调换,调换后又是一棵新的二叉树。
对于任意一个二叉树都是由以下几种情况复合而成的;

2.2特殊的二叉树

2.2.1满二叉树
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是
说,如果一个二叉树的层数为K,且结点总数是,则它就是满二叉树。
2.2.2完全二叉树
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。
对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
** 要注意的是满二叉树是一种特殊的完全二叉树**。
2.3 二叉树的性质
- 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^( i-1) 个结点.
- 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是2^h -1.
- 对任何一棵二叉树, 如果度为0其叶结点个数为 n,度为2的分支结点个数为 m
,则有n=m+1;- 若规定根结点的层数为1,具有n个结点的满二叉树的深度,h= . (ps:是log以2
为底,n+1为对数)- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对
于序号为i的结点有:
. 1.若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点;
. 2.若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子;
. 3.若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子;
2.4二叉树的存储结构
2.4.1顺序结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
- 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空
间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺
序存储在物理上是一个数组,在逻辑上是一颗二叉树。


2.4.2链表结构
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是:
链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所
在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。
相关文章:
【数据结构】详解二叉树
文章目录 1.树的结构及概念1.1树的概念1.2树的相关结构概念1.3树的表示1.4树在实际中的应用 2.二叉树的结构及概念2.1二叉树的概念2.2特殊的二叉树2.2.1满二叉树2.2.2完全二叉树 2.3 二叉树的性质2.4二叉树的存储结构2.4.1顺序结构2.4.2链表结构 1.树的结构及概念 1.1树的概念…...
MapDB:轻量级、高性能的Java嵌入式数据库引擎
MapDB:轻量级、高性能的Java嵌入式数据库引擎 在今天的软件开发中,嵌入式数据库因其轻便、高效和易于集成而备受欢迎。对于Java开发者来说,MapDB无疑是一个值得关注的选项。MapDB是一个纯Java编写的嵌入式数据库引擎,它提供了高性…...
Rye: 一个革新的Python包管理工具
文章目录 Rye: 一个革新的Python包管理工具Rye的诞生背景Rye的核心特性Rye的安装与使用Rye的优势与挑战Rye的未来展望结语 Rye: 一个革新的Python包管理工具 在Python生态系统中,包管理一直是一个复杂且令人头疼的问题。随着Python社区的不断发展,出现了…...
如何在C#代码中判断当前C#的版本和dotnet版本
代码如下: using System.Reflection; using System.Runtime.InteropServices;var csharpVersion typeof(string).Assembly.GetCustomAttributes(typeof(AssemblyFileVersionAttribute), false).OfType<AssemblyFileVersionAttribute>().FirstOrDefault()?.…...
Linux 36.3@Jetson Orin Nano之系统安装
Linux 36.3Jetson Orin Nano之系统安装 1. 源由2. 命令行烧录Step 1:下载Linux 36.3安装程序Step 2:下载Linux 36.3根文件系统Step 3:解压Linux 36.3安装程序Step 4:解压Linux 36.3根文件系统Step 5:安装应用程序Step …...
案例实践 | 基于长安链的首钢供应链金融科技服务平台
案例名称-首钢供应链金融科技服务平台 ■ 建设单位 首惠产业金融服务集团有限公司 ■ 用户群体 核心企业、资金方(多为银行)等合作方 ■ 应用成效 三大业务场景,共计关联29个业务节点,覆盖京票项目全部关键业务 案例背景…...
Vue3实战笔记(55)—Vue3.4新特性揭秘:defineModel重塑v-model,拥抱高效双向数据流!
文章目录 前言defineModel() 基本用法总结 前言 v-model 可以在组件上使用以实现双向绑定。 从 Vue 3.4 开始,推荐的实现方式是使用 defineModel() 宏 defineModel() 基本用法 定义defineModel(): <!-- Child.vue --> <script setup> con…...
C++ | Leetcode C++题解之第123题买卖股票的最佳时机III
题目: 题解: class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();int buy1 -prices[0], sell1 0;int buy2 -prices[0], sell2 0;for (int i 1; i < n; i) {buy1 max(buy1, -prices[i]);sell1 max(…...
微信小程序中Button组件的属性值和用法详解
在微信小程序开发中,Button组件是非常常用的UI组件之一,它可以让用户进行交互操作,比如提交表单、跳转页面等。了解Button组件的属性值和用法对于开发者来说至关重要。 1. Button组件简介 简要介绍Button组件在小程序中的作用和重要性&…...
等保测评 | 等保测评简介及流程具体是什么?
等保测评是指对信息系统进行安全性评估和测试,以确保其符合国家相关等级保护要求。在当前信息时代,各类机构和企业面临着日益严峻的网络安全风险,等保测评成为了保障信息系统安全的重要手段之一。本文将介绍等保测评的基本概念、流程和重要性…...
CompassArena 司南大模型测评--代码编写
测试角度 要说测试模型,对咱们程序员来说,那自然是写代码的能力强不强比较重要了。那么下面我们以 leetcode 中的一道表面上是困难题的题目来考考各家大模型,看看哪个才应该是咱们日常写程序的帮手。 部分模型回答 问题部分如下截图&#…...
叉积和法向量学习笔记
目录 叉积用的内积 相似点 给定平面上的两个向量 A 和 B,叉积和法向量相等吗 理解这点的关键: 结论: 叉积判断平面内两个向量是否相交 叉积(Cross Product)和法向量(Normal Vector)确实有…...
YZW900规格书
title: “深圳市沃进科技有限公司” 深圳市沃进科技有限公司 TOP视图 特性 异地组网,远程访问有线/无线备份单模双卡备份5G转有线,5G转WIFI2.4G5.8G双频WIFI三网口,WAN/LAN可切换软硬件看门狗智能防掉线云平台、客户端远程管理安装支架安装铝…...
9岁学生学什么编程好一些:探索编程启蒙的奥秘
9岁学生学什么编程好一些:探索编程启蒙的奥秘 在数字时代,编程已逐渐成为一项基本技能。对于9岁的学生来说,选择适合的编程课程或平台,对于培养逻辑思维、创新思维以及解决问题的能力至关重要。那么,9岁学生学什么编程…...
Java反射实战指南:反射机制的终极指南
1. 反射机制简介 在Java中,反射机制提供了一种强大的工具,用于在运行时检查类、接口、字段和方法。但它的重要性不止于此,它允许程序动态加载、探索和使用编译时完全未知的代码。这种能力是Java语言支持的一种“动态”特性,使得J…...
高效训练超越LoRA,北航发布MoRA
什么!LoRA我都没有学懂,又出现了MoRA??? LoRA作为当下最火热的大语言模型参数高效微调技术,正在以前所未有的速度迭代更新。从最初的LoRA到陆续推出的LoRA、DoRA、AsyLoRA等变体,LoRA家族可谓是…...
【Spring】Spring之依赖注入源码解析(上)
目录 Spring中到底有几种依赖注入的方式? 手动注入 自动注入 XML的autowire自动注入 Autowired注解的自动注入 寻找注入点 桥接方法 注入点进行注入 字段注入 Set方法注入 Spring中到底有几种依赖注入的方式? 首先分两种: 手动注…...
HBase 常用 shell 操作
下面给大家介绍一些HBase 常用 shell 操作,各位看官看好了啦,我要献丑了。 进入 HBase 客户端命令操作界面 $ bin/hbase shell查看帮助命令 > help查看当前数据库中有哪些表 > list创建一张表 创建 user 表,包含 info、data 两个列…...
【区分vue2和vue3下的element UI InputNumber 计数器组件,分别详细介绍属性,事件,方法如何使用,并举例】
在 Vue 2 中,Element UI 提供了 el-input-number 组件作为计数器组件,用于处理数字输入。而在 Vue 3 中,Element Plus 同样提供了类似的组件,但可能有一些属性、事件或方法的细微差异。下面我将分别介绍 Vue 2 的 Element UI 和 V…...
科普健康短视频:成都鼎茂宏升文化传媒公司
科普健康短视频:引领健康知识新潮流 在数字化时代的浪潮中,短视频以其短小精悍、直观易懂的特点,迅速成为大众获取信息的重要渠道。其中,科普健康短视频更是凭借其科学、权威、实用的内容,吸引了大量关注健康的观众。…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...



