当前位置: 首页 > news >正文

Cholesky分解(A=L * L^T)

Cholesky分解是一种用于解线性方程组和计算矩阵平方根的算法,特别适用于对称正定矩阵。这种方法相比于其他解法(如高斯消元法)在数值稳定性上通常有更好的表现,并且能够有效地利用矩阵的对称性和正定性。下面简要介绍如何使用Cholesky分解求解线性方程组 Ax = b,其中A是对称正定矩阵。

Cholesky分解的步骤:

  1. 分解: 首先,将矩阵A进行Cholesky分解,即找到一个下三角矩阵L,使得 A = L ∗ L T A = L * L^T A=LLT。这个过程是通过逐行进行的,对于矩阵A的第k行和第k列元素,按照以下公式计算L的元素:

    l k k = a k k − ∑ j = 1 k − 1 l k j 2 l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2} lkk=akkj=1k1lkj2

    l i k = 1 l k k ( a i k − ∑ j = 1 k − 1 l i j l k j ) , i > k l_{ik} = \frac{1}{l_{kk}}(a_{ik} - \sum_{j=1}^{k-1} l_{ij}l_{kj}), \quad i > k lik=lkk1(aikj=1k1lijlkj),i>k

    这样,就可以得到下三角矩阵L。

  2. 求解: 一旦得到了L,就可以通过两个步骤来解线性方程组 A x = b Ax=b Ax=b

    • 前向替换:首先解 L y = b Ly=b Ly=b,得到y。这可以通过以下递推式完成:
      y 1 = b 1 l 11 y_1 = \frac{b_1}{l_{11}} y1=l11b1
      y i = b i − ∑ j = 1 i − 1 l i j y j l i i , i = 2 , 3 , . . . , n y_i = \frac{b_i - \sum_{j=1}^{i-1} l_{ij}y_j}{l_{ii}}, \quad i = 2, 3, ..., n yi=liibij=1i1lijyj,i=2,3,...,n

    • 后向替换:然后解 L T x = y L^Tx=y LTx=y,得到最终的解x。这一步是:
      x n = y n x_n = y_n xn=yn
      x i = y i − ∑ j = i + 1 n l j i x j , i = n − 1 , n − 2 , . . . , 1 x_i = y_i - \sum_{j=i+1}^{n} l_{ji}x_j, \quad i = n-1, n-2, ..., 1 xi=yij=i+1nljixj,i=n1,n2,...,1

示例代码(Python)

以下是一个简单的Python示例,使用NumPy库来实现Cholesky分解求解线性方程组:

import numpy as npdef cholesky_solve(A, b):# Cholesky分解L = np.linalg.cholesky(A)# 前向替换求yy = np.zeros_like(b)for i in range(len(b)):if i == 0:y[i] = b[i] / L[i, i]else:y[i] = (b[i] - np.dot(L[i, :i], y[:i])) / L[i, i]# 后向替换求xx = np.zeros_like(y)for i in reversed(range(len(b))):if i == len(b) - 1:x[i] = y[i]else:x[i] = y[i] - np.dot(L[i+1:, i], x[i+1:])return x# 示例矩阵A和向量b
A = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]])
b = np.array([1, 2, 3])# 求解
x = cholesky_solve(A, b)
print("解:", x)

请注意,上述代码直接实现了Cholesky分解和求解的过程,而在实际应用中,通常会直接使用像NumPy这样的库中的内置函数numpy.linalg.cholesky来完成分解,以及相关函数来简化求解过程。

相关文章:

Cholesky分解(A=L * L^T)

Cholesky分解是一种用于解线性方程组和计算矩阵平方根的算法,特别适用于对称正定矩阵。这种方法相比于其他解法(如高斯消元法)在数值稳定性上通常有更好的表现,并且能够有效地利用矩阵的对称性和正定性。下面简要介绍如何使用Chol…...

2024大模型新应用井喷即将到来,算力问题如何解决?

#大模型新应用 #NLP #智合同 随着人工智能技术的加速演进,AI大模型已成为全球科技竞争的新高地、未来产业的新赛道、经济发展的新引擎。大模型的快速发展,特别是在自然语言处理(NLP)和计算机视觉(CV)等…...

SpringBoot 七牛云 OSS 私有模式 获取访问链接

目录 一、问题引出 二、在SpringBoot中获取私有访问路径的操作 一、问题引出 由于七牛云OSS的公有模式存在被盗刷的风险,可能导致服务器额外的费用,于是我选择私有模式进行操作。私有模式的访问路径是一个问题,因为需要对应着token和e这两…...

python-模块-网络编程-多任务

一、模块 1-1 Python 自带模块 Json模块 处理json数据 {"key":"value"} json不是字典 本质是一个有引号的字符串数据 json注意点 {} 中的数据是字符串引号必须是双引号 使用json模块可以实现将json转为字典,使用字典的方法操作数据 。 或者将…...

火狐浏览器网页翻译

火狐浏览器网页翻译 火狐浏览器的翻译功能并不支持中文,无法将中文翻译成其他语言,也不支持将其他语言翻译成中文。如果需要翻译英文网页,可以安装翻译插件来帮助解决这个问题。 安装翻译插件的步骤如下: 打开火狐浏览器&#xff…...

R语言数据分析案例以及要点和难点

该案例将涵盖数据读取、数据清洗、探索性数据分析(EDA)、数据可视化和简单的统计分析等多个方面。本案例将以一家零售商店的销售数据为例,使用R语言进行数据分析。 1. 数据准备 假设我们有一个名为sales_data.csv的CSV文件,其中包含了零售商店的销售数据。该文件包含以下列…...

【STL源码剖析-空间配置器】stack、queue简单实现

举头天外望 无我这般人 目录 stack 的概述 stack 的实现 queue 的概述 queue 的实现 契子✨ 我们之前学过了 vector、list 这些 STL 的(容器) 而我们今天将要学习空间配置器 -- stack、queue,那什么是空间配置器呢? 简单来讲就是…...

VR导航的实现原理、技术优势和应用场景

VR导航通过虚拟现实技术提供沉浸式环境,结合室内定位技术实现精准导航。目前,VR导航已在多个领域展现出其独特的价值和潜力,预示着智能导航系统的未来发展。 一、实现原理 VR导航技术依托于虚拟现实(VR)和室内定位系统。VR技术利用计算机模…...

淘宝镜像的https证书过期

错误原因: 淘宝镜像过期 早在 2021 年,淘宝就发文称,npm 淘宝镜像已经从 http://registry.npm.taobao.org 切换到了 http://registry.npmmirror.com。旧域名也将于 2022 年 5 月 31 日停止服务(直到 HTTPS 证书到期才真正不能用了…...

VSCODE 常用快捷键

快捷按键 注释 CTRL /CTRL KSHIFT ALT A取消注释 CTRL /CTRL KSHIFT ALT A搜索文件 Ctrl P移动到某一行 Ctrl g打开一个新窗口 Ctrl Shift N关闭窗口 Ctrl Shift W新建文件 Ctrl N文件间切换 Ctrl Tab全部文件搜索 Ctrl Shift F全屏 F11 打开文件出现中文乱码 文件右下角…...

医院该如何应对网络安全?

在线医生咨询受到很多人的关注,互联网医疗行业的未来发展空间巨大,但随着医院信息化建设高速发展 医院积累了大量的患者基本信息、化验结果、电子处方、生产数据和运营信息等数据 这些数据涉及公民隐私、医院运作和发展等多因素,医疗行业办…...

【qt】多窗口开发

多窗口开发 一.应用场景二.嵌入的窗口1.设计Widget窗口2.创建窗口3.添加窗口4.总代码 三.独立的窗口1.创建窗口2.显示窗口 四.总结 一.应用场景 多窗口,顾名思义,有多个窗口可以供我们进行操作! 截个小图,你应该就知道了 OK,话不多说,直接开干,先来设计我们的主窗口 需要蔬菜…...

iOS Hittest 机制和实际应用

Hittest 机制原理 hitTest的原理就是,当我们点击的时候,会触发 window的 hittest方法,在该方法中会首先使用point inside方法判断 点击的地方是否在window范围内,如果在的话,就倒序遍历姿子视图,然后将poi…...

C# 工厂模式学习

工厂模式(Factory Pattern)是一种创建型设计模式,它提供了一种创建对象的接口,而不是通过具体类来实例化对象。工厂模式可以将对象的创建过程封装起来,使代码更具有灵活性和可扩展性。 工厂模式有几种常见的实现方式&…...

AI生成微信职业头像

加油,新时代打工人! 真别说,还挺好看的 https://chatglm.cn/main/alltoolsdetail...

遥感图像的深度学习的任务类型

在遥感图像的深度学习任务中,利用深度学习技术处理和分析遥感图像已经成为一个重要的研究方向。遥感图像来自卫星、无人机等设备,包含了丰富的地球表面信息。以下是遥感图像深度学习中的主要任务类型: 1. 图像分类(Image Classif…...

162.二叉树:填充每个节点的下一个右侧节点指针(力扣)

代码解决 /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node* next;Node() : val(0), left(NULL), right(NULL), next(NULL) {}Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}Node(int _val, Node* _left, Node* _…...

NLP(20)--知识图谱+实体抽取

前言 仅记录学习过程,有问题欢迎讨论 基于LLM的垂直领域问答方案: 特点:不是通用语料;准确度要求高,召回率可以低(转人工);拓展性和可控性(改变特定内容的回答&#xf…...

【mysql数据库】mycat中间件

MyCat 简介 Mycat 是数据库 中间件 。 1、 数据库中间件 中间件 是一类连接软件组件和应用的计算机软件, 以便于软件各部件之间的沟通 。 例子 Tomcat web 中间件 。 数据库 中间件 连接 java 应用程序和数据库 2、 为什么要用 Mycat ① Java 与数据库紧耦合 …...

满帮集团 Eureka 和 ZooKeeper 的上云实践

作者:胡安祥 满帮集团,作为“互联网物流”的平台型企业,一端承接托运人运货需求,另一端对接货车司机,提升货运物流效率。2021 年美股上市,成为数字货运平台上市第一股。根据公司年报,2021 年&a…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则&#xf…...