Cholesky分解(A=L * L^T)
Cholesky分解是一种用于解线性方程组和计算矩阵平方根的算法,特别适用于对称正定矩阵。这种方法相比于其他解法(如高斯消元法)在数值稳定性上通常有更好的表现,并且能够有效地利用矩阵的对称性和正定性。下面简要介绍如何使用Cholesky分解求解线性方程组 Ax = b,其中A是对称正定矩阵。
Cholesky分解的步骤:
-
分解: 首先,将矩阵A进行Cholesky分解,即找到一个下三角矩阵L,使得 A = L ∗ L T A = L * L^T A=L∗LT。这个过程是通过逐行进行的,对于矩阵A的第k行和第k列元素,按照以下公式计算L的元素:
l k k = a k k − ∑ j = 1 k − 1 l k j 2 l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2} lkk=akk−j=1∑k−1lkj2
l i k = 1 l k k ( a i k − ∑ j = 1 k − 1 l i j l k j ) , i > k l_{ik} = \frac{1}{l_{kk}}(a_{ik} - \sum_{j=1}^{k-1} l_{ij}l_{kj}), \quad i > k lik=lkk1(aik−j=1∑k−1lijlkj),i>k
这样,就可以得到下三角矩阵L。
-
求解: 一旦得到了L,就可以通过两个步骤来解线性方程组 A x = b Ax=b Ax=b:
-
前向替换:首先解 L y = b Ly=b Ly=b,得到y。这可以通过以下递推式完成:
y 1 = b 1 l 11 y_1 = \frac{b_1}{l_{11}} y1=l11b1
y i = b i − ∑ j = 1 i − 1 l i j y j l i i , i = 2 , 3 , . . . , n y_i = \frac{b_i - \sum_{j=1}^{i-1} l_{ij}y_j}{l_{ii}}, \quad i = 2, 3, ..., n yi=liibi−∑j=1i−1lijyj,i=2,3,...,n -
后向替换:然后解 L T x = y L^Tx=y LTx=y,得到最终的解x。这一步是:
x n = y n x_n = y_n xn=yn
x i = y i − ∑ j = i + 1 n l j i x j , i = n − 1 , n − 2 , . . . , 1 x_i = y_i - \sum_{j=i+1}^{n} l_{ji}x_j, \quad i = n-1, n-2, ..., 1 xi=yi−j=i+1∑nljixj,i=n−1,n−2,...,1
-
示例代码(Python)
以下是一个简单的Python示例,使用NumPy库来实现Cholesky分解求解线性方程组:
import numpy as npdef cholesky_solve(A, b):# Cholesky分解L = np.linalg.cholesky(A)# 前向替换求yy = np.zeros_like(b)for i in range(len(b)):if i == 0:y[i] = b[i] / L[i, i]else:y[i] = (b[i] - np.dot(L[i, :i], y[:i])) / L[i, i]# 后向替换求xx = np.zeros_like(y)for i in reversed(range(len(b))):if i == len(b) - 1:x[i] = y[i]else:x[i] = y[i] - np.dot(L[i+1:, i], x[i+1:])return x# 示例矩阵A和向量b
A = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]])
b = np.array([1, 2, 3])# 求解
x = cholesky_solve(A, b)
print("解:", x)
请注意,上述代码直接实现了Cholesky分解和求解的过程,而在实际应用中,通常会直接使用像NumPy这样的库中的内置函数numpy.linalg.cholesky
来完成分解,以及相关函数来简化求解过程。
相关文章:
Cholesky分解(A=L * L^T)
Cholesky分解是一种用于解线性方程组和计算矩阵平方根的算法,特别适用于对称正定矩阵。这种方法相比于其他解法(如高斯消元法)在数值稳定性上通常有更好的表现,并且能够有效地利用矩阵的对称性和正定性。下面简要介绍如何使用Chol…...
2024大模型新应用井喷即将到来,算力问题如何解决?
#大模型新应用 #NLP #智合同 随着人工智能技术的加速演进,AI大模型已成为全球科技竞争的新高地、未来产业的新赛道、经济发展的新引擎。大模型的快速发展,特别是在自然语言处理(NLP)和计算机视觉(CV)等…...

SpringBoot 七牛云 OSS 私有模式 获取访问链接
目录 一、问题引出 二、在SpringBoot中获取私有访问路径的操作 一、问题引出 由于七牛云OSS的公有模式存在被盗刷的风险,可能导致服务器额外的费用,于是我选择私有模式进行操作。私有模式的访问路径是一个问题,因为需要对应着token和e这两…...

python-模块-网络编程-多任务
一、模块 1-1 Python 自带模块 Json模块 处理json数据 {"key":"value"} json不是字典 本质是一个有引号的字符串数据 json注意点 {} 中的数据是字符串引号必须是双引号 使用json模块可以实现将json转为字典,使用字典的方法操作数据 。 或者将…...
火狐浏览器网页翻译
火狐浏览器网页翻译 火狐浏览器的翻译功能并不支持中文,无法将中文翻译成其他语言,也不支持将其他语言翻译成中文。如果需要翻译英文网页,可以安装翻译插件来帮助解决这个问题。 安装翻译插件的步骤如下: 打开火狐浏览器ÿ…...
R语言数据分析案例以及要点和难点
该案例将涵盖数据读取、数据清洗、探索性数据分析(EDA)、数据可视化和简单的统计分析等多个方面。本案例将以一家零售商店的销售数据为例,使用R语言进行数据分析。 1. 数据准备 假设我们有一个名为sales_data.csv的CSV文件,其中包含了零售商店的销售数据。该文件包含以下列…...

【STL源码剖析-空间配置器】stack、queue简单实现
举头天外望 无我这般人 目录 stack 的概述 stack 的实现 queue 的概述 queue 的实现 契子✨ 我们之前学过了 vector、list 这些 STL 的(容器) 而我们今天将要学习空间配置器 -- stack、queue,那什么是空间配置器呢? 简单来讲就是…...

VR导航的实现原理、技术优势和应用场景
VR导航通过虚拟现实技术提供沉浸式环境,结合室内定位技术实现精准导航。目前,VR导航已在多个领域展现出其独特的价值和潜力,预示着智能导航系统的未来发展。 一、实现原理 VR导航技术依托于虚拟现实(VR)和室内定位系统。VR技术利用计算机模…...

淘宝镜像的https证书过期
错误原因: 淘宝镜像过期 早在 2021 年,淘宝就发文称,npm 淘宝镜像已经从 http://registry.npm.taobao.org 切换到了 http://registry.npmmirror.com。旧域名也将于 2022 年 5 月 31 日停止服务(直到 HTTPS 证书到期才真正不能用了…...

VSCODE 常用快捷键
快捷按键 注释 CTRL /CTRL KSHIFT ALT A取消注释 CTRL /CTRL KSHIFT ALT A搜索文件 Ctrl P移动到某一行 Ctrl g打开一个新窗口 Ctrl Shift N关闭窗口 Ctrl Shift W新建文件 Ctrl N文件间切换 Ctrl Tab全部文件搜索 Ctrl Shift F全屏 F11 打开文件出现中文乱码 文件右下角…...

医院该如何应对网络安全?
在线医生咨询受到很多人的关注,互联网医疗行业的未来发展空间巨大,但随着医院信息化建设高速发展 医院积累了大量的患者基本信息、化验结果、电子处方、生产数据和运营信息等数据 这些数据涉及公民隐私、医院运作和发展等多因素,医疗行业办…...

【qt】多窗口开发
多窗口开发 一.应用场景二.嵌入的窗口1.设计Widget窗口2.创建窗口3.添加窗口4.总代码 三.独立的窗口1.创建窗口2.显示窗口 四.总结 一.应用场景 多窗口,顾名思义,有多个窗口可以供我们进行操作! 截个小图,你应该就知道了 OK,话不多说,直接开干,先来设计我们的主窗口 需要蔬菜…...
iOS Hittest 机制和实际应用
Hittest 机制原理 hitTest的原理就是,当我们点击的时候,会触发 window的 hittest方法,在该方法中会首先使用point inside方法判断 点击的地方是否在window范围内,如果在的话,就倒序遍历姿子视图,然后将poi…...
C# 工厂模式学习
工厂模式(Factory Pattern)是一种创建型设计模式,它提供了一种创建对象的接口,而不是通过具体类来实例化对象。工厂模式可以将对象的创建过程封装起来,使代码更具有灵活性和可扩展性。 工厂模式有几种常见的实现方式&…...

AI生成微信职业头像
加油,新时代打工人! 真别说,还挺好看的 https://chatglm.cn/main/alltoolsdetail...
遥感图像的深度学习的任务类型
在遥感图像的深度学习任务中,利用深度学习技术处理和分析遥感图像已经成为一个重要的研究方向。遥感图像来自卫星、无人机等设备,包含了丰富的地球表面信息。以下是遥感图像深度学习中的主要任务类型: 1. 图像分类(Image Classif…...

162.二叉树:填充每个节点的下一个右侧节点指针(力扣)
代码解决 /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node* next;Node() : val(0), left(NULL), right(NULL), next(NULL) {}Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}Node(int _val, Node* _left, Node* _…...
NLP(20)--知识图谱+实体抽取
前言 仅记录学习过程,有问题欢迎讨论 基于LLM的垂直领域问答方案: 特点:不是通用语料;准确度要求高,召回率可以低(转人工);拓展性和可控性(改变特定内容的回答…...

【mysql数据库】mycat中间件
MyCat 简介 Mycat 是数据库 中间件 。 1、 数据库中间件 中间件 是一类连接软件组件和应用的计算机软件, 以便于软件各部件之间的沟通 。 例子 Tomcat web 中间件 。 数据库 中间件 连接 java 应用程序和数据库 2、 为什么要用 Mycat ① Java 与数据库紧耦合 …...

满帮集团 Eureka 和 ZooKeeper 的上云实践
作者:胡安祥 满帮集团,作为“互联网物流”的平台型企业,一端承接托运人运货需求,另一端对接货车司机,提升货运物流效率。2021 年美股上市,成为数字货运平台上市第一股。根据公司年报,2021 年&a…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...