JAVA实现人工智能,采用框架SpringAI
文章目录
- JAVA实现人工智能,采用框架SpringAI
- Spring AI介绍
- 使用介绍
- 项目前提
- 项目结构
- 第一种方式采用openai
- 1. pom文件:
- 2. application.yml 配置
- 3.controller 实现层
- 项目测试
JAVA实现人工智能,采用框架SpringAI
Spring AI介绍
Spring
AI是AI工程师的一个应用框架,它提供了一个友好的API和开发AI应用的抽象,旨在简化AI应用的开发工序,例如开发一款基于ChatGPT的对话应用程序。
目前该项目已经集成了OpenAI、Azure OpenAI、Hugging
Face、Ollama等API。不过,对于集成了OpenAI接口的项目,只要再搭配One-API项目,就可以调用目前主流的大语言模型了。
使用介绍
在介绍如何使用Spring AI开发一个对话接口之前,我先介绍下ChatGPT应用的开发原理。
首先,ChatGPT是OpenAI推出的一款生成式人工智能大语言模型,OpenAI为了ChatGPT能够得到广泛应用,向开发者提供了ChatGPT的使用接口,开发者只需使用OpenAI为开发者提供的Key,向OpenAI提供的接口地址发起各种形式的请求就可以使用ChatGPT。因此,开发一款ChatGPT应用并不是让你使用人工智能那套技术进行训练和开发,而是作为搬运工,通过向OpenAI提供的ChatGPT接口发起请求来获取ChatGPT响应,基于这一流程来开发的。
项目前提
本人已经本地部署chatglm3-6b+oneapi 项目环境
项目结构

第一种方式采用openai
1. pom文件:
SpringAI 官网 新版本,由于我本地chatglm3-6b openai 接口实现暂不支持请求体解析,所以使用0.8.1-SNAPSHOT 版本进行集成
<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>1.0.0-SNAPSHOT</version><type>pom</type><scope>import</scope>
</dependency>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.2.4</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.lvyuanj.core</groupId><artifactId>micro-open-ai</artifactId><version>1.0-SNAPSHOT</version><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencyManagement><dependencies><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>0.8.1-SNAPSHOT</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId></dependency></dependencies><repositories><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository><repository><id>spring-snapshots</id><name>Spring Snapshots</name><url>https://repo.spring.io/snapshot</url><releases><enabled>false</enabled></releases></repository></repositories><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build>
</project>
2. application.yml 配置
spring:ai:openai:api-key: XXXXXXXXXXXXXXXXXXXXXXbase-url: XXXXXXXXXXXXXXXXXXXXXXXchat:enabled: trueoptions:model: chatglm3-6btemperature: 0.3F # 温度越高,回答得比较有创新性,但是准确率会下降,温度越低,回答的准确率会更好#ollama模型ollama:api-key: XXXXXXXXXXXXXXXXXXXXbase-url: XXXXXXXXXXXXXXXXXXXXXXXXXchat:enabled: falseoptions:model: chatglm3-6b
3.controller 实现层
package com.lvyuanj.core.ai.controller;import jakarta.annotation.Resource;
import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;@RestController
@RequestMapping("open-ai")
class OpenAiController {@Resourceprivate OpenAiChatClient openAiChatClient;/*** 调用OpenAI的接口-默认参数* @param msg* @return*/@GetMapping("/chat")public String completion(@RequestParam("msg") String msg) {return openAiChatClient.call(msg);}/*** 调用OpenAI的接口-默认参数* @param msg-输入的文本* @return*/@RequestMapping(value = "/chat2")public Object chat2(@RequestParam(value = "msg") String msg) {ChatResponse chatResponse = openAiChatClient.call(new Prompt(msg));return chatResponse.getResult().getOutput().getContent();}/*** 调用OpenAI的接口-自定义参数* @param msg-输入的文本* @return*/@RequestMapping(value = "/chat3")public Object chat3(@RequestParam(value = "msg") String msg) {//可选参数在配置文件中配置了,在代码中也配置了,那么以代码的配置为准,也就是代码的配置会覆盖掉配置文件中的配置ChatResponse chatResponse = openAiChatClient.call(new Prompt(msg, OpenAiChatOptions.builder()//.withModel("gpt-4-32k") //gpt的版本,32k是参数量.withTemperature(0.4F) //温度越高,回答得比较有创新性,但是准确率会下降,温度越低,回答的准确率会更好.build()));return chatResponse.getResult().getOutput().getContent();}/*** 调用OpenAI的接口-流式接口* @param msg-输入的文本* @return*/@RequestMapping(value = "/chat4")public Object chat4(@RequestParam(value = "msg") String msg) {//可选参数在配置文件中配置了,在代码中也配置了,那么以代码的配置为准,也就是代码的配置会覆盖掉配置文件中的配置Flux<ChatResponse> flux = openAiChatClient.stream(new Prompt(msg, OpenAiChatOptions.builder()//.withModel("gpt-4-32k") //gpt的版本,32k是参数量.withTemperature(0.4F) //温度越高,回答得比较有创新性,但是准确率会下降,温度越低,回答的准确率会更好.build()));flux.toStream().forEach(chatResponse -> {System.out.println(chatResponse.getResult().getOutput().getContent());});return flux.collectList(); //数据的序列,一序列的数据,一个一个的数据返回}/*** 字转向量进行数据查询**/@PostMapping("/embedding")public void pgQuery(@RequestBody List<String> wordList) {EmbeddingRequest embeddingRequest = new EmbeddingRequest(wordList, OpenAiEmbeddingOptions.builder().build());EmbeddingResponse response = openAiEmbeddingClient.call(embeddingRequest);List<Double> wordVectors = response.getResult().getOutput();List<Float> vectors = wordVectors.stream().map(o -> o.floatValue()).collect(Collectors.toList());Object[] neighborParams = new Object[] { new PGvector(vectors) };List<Map<String, Object>> rows = jdbcTemplate.queryForList("SELECT * FROM modeldata ORDER BY embedding <-> ? LIMIT 5", neighborParams);if (Objects.nonNull(rows) && rows.size() > 0) {for (Map<String, Object> row : rows) {for (Map.Entry<String, Object> entry : row.entrySet()) {String key = entry.getKey();Object value = entry.getValue();System.out.println("key:"+key + ",value:" + value);}}}}}
项目测试

接下来继续接入文字、图片、视频对接实现
相关文章:
JAVA实现人工智能,采用框架SpringAI
文章目录 JAVA实现人工智能,采用框架SpringAISpring AI介绍使用介绍项目前提项目结构第一种方式采用openai1. pom文件: 2. application.yml 配置3.controller 实现层 项目测试 JAVA实现人工智能,采用框架SpringAI Spring AI介绍 Spring AI是AI工程师的一个应用框架…...
基础—SQL—DQL(数据查询语言)分组查询
一、引言 分组查询的关键字是:GROUP BY。 二、DQL—分组查询 1、语法 SELECT 字段列表 FROM 表名 [ WHERE 条件 ] GROUP BY 分组字段名 [ HAVING 分组后过滤条件 ]; 注意: 1、[ ] 里的内容可以有可以没有。 2、这条SQL语句有两块指定条件的地方&#…...
从CSV到数据库(简易)
需求:客户上传CSV文档,要求CSV文档内容查重/插入/更新相关数据。 框架:jdbcTemplate、commons-io、 DB:oracle 相关依赖: 这里本来打算用的2.11.0,无奈正式项目那边用老版本1.3.1,新版本对类型…...
K210视觉识别模块学习笔记3:内存卡写入拍摄图片_LED三色灯的操作_按键操作_定时器的配置使用
今日开始学习K210视觉识别模块: LED三色灯的操作_按键操作_定时器的配置使用_内存卡写入拍摄图片 亚博智能的K210视觉识别模块...... 固件库版本: canmv_yahboom_v2.1.1.bin 本文最终目的是编写一个按键拍照的例程序: 为以后的专用场景的模型训练做准备…...
如何定义“智慧校园”这个概念
在信息爆炸的时代,教育面临着前所未有的挑战:如何让每个学生在海量知识中找到属于自己的路径?如何让教师的智慧与科技的力量相得益彰?如何让校园成为培养创新思维的摇篮?智慧校园,这一概念的提出࿰…...
OpenSSL自签名证书
文章目录 生成1. 生成根证书的私钥(root_private_key.pem)2. 创建根证书的CSR和自签名证书(root_csr.pem)3. 生成服务器证书的私钥(server_private_key.pem)4. 创建服务器证书的CSR(server_priv…...
QtCreator调试运行工程报错,无法找到相关库的的解决方案
最新在使用国产化平台做qt应用开发时,总是遇到qtcreator内调试运行 找不到动态库的问题,为什么会出现这种问题呢?明明编译的时候能够正常通过,运行或者调试的时候找不到相关的库呢?先说结论,排除库本身的问…...
【Python系列】Python 元组(Tuple)详解
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
特征融合篇 | YOLOv8 引入动态上采样模块 | 超过了其他上采样器
1. 介绍 本篇介绍了一种将动态上采样模块引入 YOLOv8 目标检测算法的新方法,该方法在 COCO 数据集上获得了 55.7% 的 mAP,超越了其他上采样器。该方法将动态上采样模块引入到 YOLOv8 的特征融合阶段,能够根据输入图像的特征分辨率动态调整上…...
Beyond Compare 3密钥被撤销的解决办法
首先,BCompare3的链接如下 链接:https://pan.baidu.com/s/1vuSxY0cVQCt0-8CpFzUhvg 提取码:8888 --来自百度网盘超级会员V7的分享 1.问题现象 激活之后在使用过程中有时候会出现密钥被撤销的警告,而且该工具无法使用ÿ…...
知识见闻 - 人和动物的主要区别
人类和动物的主要区别之一确实在于理性,但这只是众多区别中的一个方面。以下是一些更全面的比较,突出人类和动物之间的主要区别: 理性和抽象思维: 人类:人类具有高度发展的理性能力,可以进行抽象思维、逻辑…...
Javaweb基础之工程路径
大家好,这里是教授.F 引入: 工程路径有一个知识点需要注意:就是相对路径。所谓相对路径就是依赖当前位置: 相对路径的定位依赖于当前位置或参考位置。 使用相对路径来解决, 一个非常重要的规则:页面所有的…...
国际荐酒师(香港)协会受邀出席广州意大利国庆晚宴
2024年5月30日,意大利驻广州总领事馆举办的2024年意大利国庆招待会及晚宴,庆祝意大利共和国成立。此次晚宴旨在促进中意两国之间的文化交流与合作。国际荐酒师(香港)协会受主办方邀请参与了这一重要活动。 国际荐酒师(…...
让驰骋BPM系统插上AI的翅膀
让驰骋BPM系统插上AI的翅膀 在当今日益复杂多变的商业环境中,业务流程管理(BPM)系统的应用愈发广泛,成为企业提高效率、优化流程、降低成本的重要工具。驰骋BPM系统凭借其出色的性能和丰富的功能,赢得了众多企业的青睐…...
排队论 | 基于排队机制实现智能仓储机器人巡逻及避碰
研究背景: 智能仓储机器人在现代物流行业中扮演着重要的角色,能够提高仓库的运作效率和准确性。然而,仓储机器人在巡逻过程中可能会遇到其他机器人或障碍物,这就需要解决排队和避碰问题,以确保安全和高效的运作。 研究路线: 背景调研:了解智能仓储机器人的发展和应用…...
Node.js和npm常用命令
一、Node.js简介 Node.js是一个免费、开源、跨平台的JavaScript运行时环境,允许开发人员创建服务器、web应用程序、命令行工具和脚本。 点击查看node.js中文官网 点击查看node.js英文官网 二、npm简介 npm(Node Package Manager)是Node.js的软件包管理器࿰…...
pytest +allure在测试中的应用
一、allure配置: 1、安装allure库 pip install allure-pytest2、代码中导入 import allure3、常用命令: 1)、 pytest --alluredir报告目录 测试脚本.py比如:pytest --alluredir./allure_report (未指定执行所有) 2&…...
004 CentOS 7.9 mongodb7.0.11安装及配置
https://www.mongodb.com/try/download/shell https://www.mongodb.com/try/download/community 文章目录 /etc/mongod.conf在 /etc/systemd/system/ 目录下创建一个名为 mongod.service 的文件重新加载 systemd 配置:启用服务:现在,可以手动…...
Docker安装Redis(云服务器)
准备: 在云服务器中开启6370端口号 docker run -d --name redis -p 6379:6379 redis 这条命令使用docker运行一个名为"redis"的容器,映射容器的6379端口到主机的6379端口,并且使用redis镜像来运行容器。REDIS是一个开源的内存数据…...
springboot中抽象类无法注入到ioc容器
1、背景 在写代码时,发现service接口有两个实现类,并且两个实现类中没有对类名重命名,属性注入的时候也没有使用byName或Qualifier,正确情况下会发生多实现报错的问题,以前对这个问题进行解析过。 2、调试过程 我想…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
