当前位置: 首页 > news >正文

理解lambda表达式

Lambda表达式:
这里不再过多叙述什么事lambda表达式,就说下怎么使用,首先和lambda表达式同时存在的就是另一个定义,就是匿名内部类。匿名内部类首先需要一个接口。
下面用一个例子说明lambda表达式:

public class HelloWorld{public static void main(String[] args){String name = "cat";Animal cat = new Animal(name, ()->{System.out.println("Hello, I'm a " + name + "!");});}public static interface Talk {void talks();}public static class  Animal {public String name ;public Animal(String names, Talk talks) {this.name = names;talks.talks();}}
}

这里的接口就是Talk,该接口只是申明了一个功能,talks; 但是至于这个方法的实现就是lambda表达式的精髓所在,这个方法的具体实现,我们可以放在使用这个方法的时候再去实现。
如上所述代码,该方法是在初始化Animal对象的时候才实现的,这就和以往的方法不同,以往都是先定义方法的函数体,然后再使用。这里反而是到使用的时候再定义,这不就可以根据我们的场景来定义方法的功能了嘛。
这就是可以实现,根据不同场景采用不同策略应对的功能。 比如导师给你安排个任务,然后告诉你说有困难你再去找XX师兄师姐。 这里就是一个场景加一个方法的组合,场景是有困难,然后方法时去找师兄师姐,但是场景很多啊,你可能刚上手就不会,也可能是做到一半遇到问题,亦或者是做到最后一步,不知道怎么总结,那你请教的内容必然也不会相同。所以会根据场景确定问题。这里场景就是一个对象(Animal),实例化一个场景,然后根据场景实现请教这个接口中的详细方法(talk)。
这就是我理解的lambda表达式最直观的一个使用场景,当然这里完全可以用匿名内部类解决,上面的初始化方法换成如下即可。

Animal dog = new Animal(name,  new Talk() {@Overridepublic void talks(){System.out.println("Hello, I'm a " + name + "!");}});

Lambda表达式只是简化了这里的表达形式,这里可以这么理解,

Talk talks = new Talk() {@Overridepublic void talks(){System.out.println("Hello, I'm a " + name + "!");}};

然后这里的就是直接将等号左边当成了参数放入初始化函数中。而lambda表达式就是在这个基础上再次简化,可以写成下面的格式:

(参数) -> {方法体;}

这里的talks方法是无参函数,所以就直接传一个 () 再加上符号 -> 然后通过{}将方法体包含住,所以在看到lambda表达式的时候,如果还不熟悉,不理解其含义,可以先将其逆转为匿名内部类,这样就会好理解很多。

下面就在Android代码中找一个例子:

private final Comparator<WindowState> mWindowComparator =(WindowState newWindow, WindowState existingWindow) -> {final WindowToken token = WindowToken.this;if (newWindow.mToken != token) {throw new IllegalArgumentException("newWindow=" + newWindow+ " is not a child of token=" + token);}if (existingWindow.mToken != token) {throw new IllegalArgumentException("existingWindow=" + existingWindow+ " is not a child of token=" + token);}return isFirstChildWindowGreaterThanSecond(newWindow, existingWindow) ? 1 : -1;
};

就找到之前Window相关内容中的排序算法作为例子,这里的mWindowComparator是一个泛型为WindowState的Comparator,然后初始化的时候看到了等号邮编就是一个lambda表达式。
这个lambda表达式参数列表为(WindowState, WindowState),这两个WindowState分别是待比较的两个量,再看后面的方法体,即{}中包含的地方,首先是确认newWindow是不是和队列中的WindowState属于同一个聚类(即mToken属性相同),再确认待比较的exitingWindowstate是否是同一个聚类,然后再调用isFirstChildWindowGreaterThanSecond()方法进行比较。那这里怎么理解呢?
首先匿名内部类,要找到一个接口,接口很好找,就是需要实现方法体的那个东西,所以这里就是Comparator,看定义,确实是一个接口。
那重写成匿名内部类就是下面的模式:

Comparator<WindowState> mWindowComparator = new Comparator<WindowState>() { @Overrideint compare(WindowState newWindow,WindowState existingWindow ){return isFirstChildWindowGreaterThanSecond(newWindow, existingWindow) ? 1 : -1;}};

这样就比较好理解lambda表达式了,他就是重写了这个compare方法而已。所以遇到不是很好理解的lambda表达式,就先还原成匿名内部类形式,这样就能方便理解一点,等熟悉后其实也不用这么麻烦了,一般都能直接看明白

不过之前还遇到一个比较奇怪的lambda表达式形式,不太常见,就是 :: 这个符号。双冒号在c++中遇到的多一点,可代表某个某个域的函数或类型,在lambda表达式中好像也差不多,在Android代码中就有用到这个功能:

private final Comparator<WindowToken> mWindowComparator =Comparator.comparingInt(WindowToken::getWindowLayerFromType);

这里就代表着调用了WindowToken这个类中的getWindowLayerFromType方法。

相关文章:

理解lambda表达式

Lambda表达式&#xff1a; 这里不再过多叙述什么事lambda表达式&#xff0c;就说下怎么使用&#xff0c;首先和lambda表达式同时存在的就是另一个定义&#xff0c;就是匿名内部类。匿名内部类首先需要一个接口。 下面用一个例子说明lambda表达式&#xff1a; public class Hel…...

【面试】Java的前端编译器和后端编译器

目录 1. 说明2. 前端编译器2.1 主要功能2.2 工作原理 3. 后端编译器3.1 主要功能3.2 工作原理 1. 说明 1.在Java的编译过程中&#xff0c;编译器通常被划分为前端编译器和后端编译器&#xff0c;各自负责不同的任务。2.前端编译器主要负责源代码的词法分析、语法分析和语义检查…...

教育小程序的性能优化:从前端到后端的综合提升策略

随着教育小程序的普及&#xff0c;其性能直接影响用户体验和教学效果。本文将从前端到后端&#xff0c;详细探讨教育小程序的性能优化策略&#xff0c;帮助开发者打造高效、流畅的教育应用。 一、前端性能优化策略 代码优化 减少HTTP请求&#xff1a;合并CSS、JavaScript文件…...

单链表实现通讯录

之前我们完成了基于顺序表&#xff08;动态&#xff09;实现通讯录&#xff0c;现在我们链表学完了&#xff0c;可以尝试着使用链表来实现我们的通讯录。 首先我们要明白我们写的通讯录是由一个个节点组成的&#xff0c;每个节点里存储的就是我们的联系人信息。也就是说 我们需…...

Linux 命令操作技巧

Linux命令行界面提供了丰富的快捷键来提高操作效率&#xff0c;以下是一些常用的Linux终端快捷键&#xff0c;主要基于Bash shell&#xff1a; Tab - 自动补全&#xff1a;输入命令、文件名、目录名或命令选项的开头部分&#xff0c;然后按Tab键&#xff0c;系统会自动补全剩余…...

深度学习21天 —— 卷积神经网络(CNN):识别验证码( 第12天)

目录 一、前期准备 1.1 标签数字化 1.2 加载数据 1.3 配置数据 二、其他 2.1 损失函数 categorical_crossentropy 2.2 plt.legend(loc ) 2.3 history.history 活动地址&#xff1a;CSDN21天学习挑战赛 学习&#xff1a;深度学习100例-卷积神经网络&#xff08;CNN&…...

利用 Docker 简化Redis部署:快速搭建Redis服务

利用 Docker 简化Redis部署&#xff1a;快速搭建Redis服务 目录 利用 Docker 简化Redis部署&#xff1a;快速搭建Redis服务为什么选择 Docker准备工作拉取Redis镜像快速运行Redis容器验证Redis服务总结 在现代软件开发中&#xff0c;Redis作为一种高性能的键值数据库&#xff0…...

Web前端框架:深入探索与实践

Web前端框架&#xff1a;深入探索与实践 在当下数字化飞速发展的时代&#xff0c;Web前端框架的选择与应用成为了开发者们关注的焦点。Node.js&#xff0c;作为一种强大的后端技术&#xff0c;在前端框架的构建中也发挥着不可或缺的作用。本文将围绕Node.js Web前端框架&#…...

【算法】贪心算法——柠檬水找零

题解&#xff1a;柠檬水找零(贪心算法) 目录 1.题目2.题解3.参考代码4.证明5.总结 1.题目 题目链接&#xff1a;LINK 2.题解 分情况讨论 贪心算法 当顾客为5元时&#xff0c;收下当顾客为10元时&#xff0c;收下10元并找回5元当顾客为20元时&#xff0c;收下20元并找回10…...

Jmeter安装教程

1 Jmeter下载 Jmeter下载地址&#xff1a;https://jmeter.apache.org/download_jmeter.cgi&#xff0c;选择需要的版本点击下载 解压jmeter安装包 解压后的安装包如下&#xff1a; 2 配置Jmeter环境变量 进入环境变量配置页面&#xff1a;计算机->属性->高级系统设置-&…...

关于磁盘管理

磁盘管理是操作系统提供的一项功能&#xff0c;用于高效地组织、维护和控制计算机的硬盘驱动器及其卷&#xff08;分区&#xff09;。通过磁盘管理工具&#xff0c;用户和管理员可以执行多种与存储相关的高级任务&#xff0c;主要包括&#xff1a; 初始化新磁盘&#xff1a; …...

人大金仓数据库大小写不敏感确认

1、图形化确认(管理—其他选项—预设选项) 2、命令行确认 # ksql -p 54321 -U system test # show enable_ci; 查看是否大小写敏感&#xff0c;on表示大小敏感&#xff0c;off表示大小写不敏感&#xff0c;使用某些项目的时候&#xff0c;需要设置数据库大小写不敏感&#…...

【Java】还有人不懂继承?25 个 Case 包教包会

还有人不懂继承&#xff1f;25 个 Case 包教包会 1.Implement single inheritance2.Implement multilevel inheritance3.Implement hierarchical inheritance4.Override a base class method into a derived class5.Demonstrate the protected access specifier6.Create an Stu…...

Qt实现窗口失去焦点抖动功能

一、失去焦点检测 当窗口失去焦点时会发出FocusOut事件&#xff0c;具体实现如下&#xff1a; 首先给窗口安装事件过滤器&#xff1a; this->installEventFilter(this);然后在事件过滤器函数中判断有没有失去焦点 bool MessageDialog::eventFilter(QObject *object, QEve…...

Flink 数据源

原理 在 Flink 中&#xff0c;数据源&#xff08;Source&#xff09;是其中一个核心组件&#xff0c;负责从各种来源读取数据供 Flink 程序处理。 Flink 的数据源类型丰富&#xff0c;涵盖了从简单测试到生产环境使用的各种场景。Kafka、Socket、文件和集合是 Flink 中最常见…...

在本地电脑中如何用命令操作远程服务器上的数据库

日常做服务器维护&#xff0c;经常操作的2个事情&#xff0c;一个是备份远程服务器上的数据库到本地电脑&#xff0c;一个是将备份下来的数据库是恢复到本机做测试用。下面以阿里云的mysql为例&#xff0c;看看怎么弄。电脑是win10系统&#xff0c;先打开cmd命令行模式&#xf…...

uniApp子组件监听数据的变化的方法之一

props:{//用来接收外界传递过来的数据swiperList:{type:Array,default:[]}}, swiperList&#xff1a;是父组件传递过来的值 通过 watch 监听&#xff08;在父组件中也同样可以使用&#xff0c;跟VUE的监听数据变化同理&#xff09; watch:{//监听组件中的数据变化swiperList(ol…...

Python容器化技术的15个Docker实践

今天&#xff0c;我们将一起探索如何利用Docker这一强大的容器化工具&#xff0c;来提升你的Python项目开发、部署效率。通过一系列由浅入深的实践案例&#xff0c;你将学会如何将Python应用装入“小盒子”&#xff0c;让它在任何地方都能轻松运行。 1. Docker入门&#xff1a…...

QT天气预报项目(写在简历上)

一、ui设计 实现功能:可以搜索不同的城市进行天气的查询,并且显示未来7天内的天气,并绘制出当天的最高气温和最低气温曲线图。 学到的知识: stylesheet界面美化 Json数据解析 HTTP通信get请求 使用事件过滤器绘制温度曲线 多控件处理(利用数组) 代码整合调试能力 二…...

从零到一建设数据中台 - 数据可视化

从零到一建设数据中台(八)- 数据可视化 一、数据可视化大屏 数据可视化是借助于图形化手段,清晰有效地传达与沟通信息。 将一些业务的关键指标通过数据可视化的方式展示到一块或多块LED大屏上,以大屏为主要展示载体的数据可视化设计。 在数据可视化大屏构建过程中,为了…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

Windows 下端口占用排查与释放全攻略

Windows 下端口占用排查与释放全攻略​ 在开发和运维过程中&#xff0c;经常会遇到端口被占用的问题&#xff08;如 8080、3306 等常用端口&#xff09;。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口&#xff0c;帮助你高效解决此类问题。​ 一、准…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。

2024 年&#xff0c;高端封装市场规模为 80 亿美元&#xff0c;预计到 2030 年将超过 280 亿美元&#xff0c;2024-2030 年复合年增长率为 23%。 细分到各个终端市场&#xff0c;最大的高端性能封装市场是“电信和基础设施”&#xff0c;2024 年该市场创造了超过 67% 的收入。…...