当前位置: 首页 > news >正文

论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》

基于深度学习模型的药物-靶标结合亲和力预测

这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。

文章目录

  • 基于深度学习模型的药物-靶标结合亲和力预测
  • 前言
  • 一、蛋白质接触图谱
  • 二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响
    • 1.对这段话的解释
    • 2.关于Alphafold3
  • 三、随机配体与随机配体节点属性(配体一般指药物)
    • 1.什么是随机配体与配体节点属性
  • 四、关于深度学习模型对特征的自动学习过程
    • 1.是怎么进行自动学习的
    • 2.特征学习过程
    • 2.深度神经网络模型对相互作用的预测DNN DML的学习。
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

一、蛋白质接触图谱

蛋白质接触图谱是一种用于表示蛋白质三维结构的工具。它使用一个二元二维矩阵来表示所有可能的氨基酸残基对之间的距离¹⁴。

在这个矩阵中,如果两个氨基酸在空间中的距离小于一定的阈值(通常是8Å),那么我们就认为这两个氨基酸是接触的,矩阵中对应的元素值为1;否则,我们认为这两个氨基酸不接触,矩阵中对应的元素值为0²。

蛋白质接触图谱的主要意义在于,它提供了一种直观的方式来理解蛋白质的三维结构,特别是蛋白质内部各个氨基酸之间的相互作用。这对于理解蛋白质的功能,以及进行药物设计等任务具有重要的意义²。

Source: Conversation with Copilot, 28/05/2024
(1) Biopython | 计算蛋白质的接触图(contact map) - CSDN博客. https://blog.csdn.net/u012325865/article/details/121118617.
(2) Biopython | 计算蛋白质的接触图(contact map) - 华为云社区. https://bbs.huaweicloud.com/blogs/308589.
(3) 蛋白质结构预测—残基接触的基础知识—接触概念(三)_残基的ca-CSDN博客. https://blog.csdn.net/qq_36112387/article/details/117029591.
(4) 【9.4.1】蛋白-配体相互作用指纹图谱(PLIF) - Sam’ Note. https://bing.com/search?q=%e8%9b%8b%e7%99%bd%e8%b4%a8%e6%8e%a5%e8%a7%a6%e5%9b%be%e8%b0%b1%e6%98%af%e4%bb%80%e4%b9%88.
(5) undefined. https://files.rcsb.org/download/.

蛋白质接触图谱是一种二元二维矩阵,用于表示蛋白质三维结构中所有可能的氨基酸残基对之间的距离。以下是一个简化的例子:

假设我们有一个由四个氨基酸残基组成的蛋白质,我们可以将其表示为一个4x4的矩阵。在这个矩阵中,如果两个氨基酸在空间中的距离小于一定的阈值(通常是8Å),那么我们就认为这两个氨基酸是接触的,矩阵中对应的元素值为1;否则,我们认为这两个氨基酸不接触,矩阵中对应的元素值为0。

例如,假设第一个和第二个氨基酸接触,第三个和第四个氨基酸接触,其他的氨基酸对不接触,那么我们可以得到以下的接触图谱:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

在这个例子中,矩阵的第一行和第二列的元素值为1,表示第一个和第二个氨基酸接触;矩阵的第三行和第四列的元素值为1,表示第三个和第四个氨基酸接触¹。

这只是一个简化的例子,实际的蛋白质接触图谱会更复杂,因为蛋白质通常由数百到数千个氨基酸残基组成,而且它们在空间中的排列方式也会非常复杂¹。希望这个例子能帮助你理解蛋白质接触图谱的基本概念!如果你有任何其他问题或需要进一步的解释,请随时告诉我!

Source: Conversation with Copilot, 28/05/2024
(1) Biopython | 计算蛋白质的接触图(contact map) - CSDN博客. https://blog.csdn.net/u012325865/article/details/121118617.
(2) The Human Protein Atlas. https://www.proteinatlas.org/.
(3) 蛋白质间接触的深度图学习,Bioinformatics - X-MOL. https://www.x-mol.com/paper/1495660998561189888/t?recommendPaper=1376496881286754304.
(4) undefined. https://files.rcsb.org/download/.
(5) undefined. https://github.com/zw2x/glinter.

二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响

基于蛋白质接触图谱的蛋白质编码方法并不能提高深度学习模型的性能。此外,通过各种预测方法计算的不同蛋白质接触图谱,如AlphaFold2 [73]、Pconsc4 [74]和ESM-1b [75],无论其准确性如何,对DTA预测都没有太大影响。同样,蛋白质和药物编码的组合方法不会显着影响深度学习模型的性能。在随机配体和随机配体节点属性之间的配体编码中观察到显着差异,表明学习任务对配体数据的依赖性要大得多。

1.对这段话的解释

这段文字主要讨论了几种蛋白质编码方法和药物编码方法对深度学习模型性能的影响。以下是主要观点的总结:

  • 基于蛋白质接触图谱的蛋白质编码方法并不能提高深度学习模型的性能。这意味着,尽管蛋白质接触图谱包含了蛋白质的三维结构信息,但这些信息并没有帮助提高模型的预测性能。

  • 无论使用哪种预测方法(如AlphaFold2、Pconsc4和ESM-1b)计算的蛋白质接触图谱,其准确性如何,对药物靶点亲和力(DTA)预测都没有太大影响。这可能表明,DTA预测更多地依赖于其他类型的信息,而不仅仅是蛋白质的结构信息。

  • 蛋白质和药物编码的组合方法不会显着影响深度学习模型的性能。这可能说明,编码方法的选择并不是影响模型性能的关键因素。

  • 在随机配体和随机配体节点属性之间的配体编码中观察到显着差异,表明学习任务对配体数据的依赖性要大得多。这可能意味着,对于这类任务,配体的特性和属性可能比蛋白质的信息更为重要。

这些发现可能对深度学习在药物发现中的应用有重要的指导意义。希望这个总结对你有所帮助!如果你有任何其他问题或需要进一步的解释,请随时告诉我!

2.关于Alphafold3

结合最新的Aphafold3呢?为什么蛋白质接触图谱,其准确性如何,对药物靶点亲和力(DTA)预测都没有太大影响。
关于AlphaFold3,据报道⁵⁶⁷⁸,它在预测蛋白质结构和相互作用方面取得了显著的进步。AlphaFold3可以预测蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,这对于理解生物世界和药物发现具有重要的意义。对于蛋白质与其他分子类型的相互作用,AlphaFold3的预测精度至少比现有的预测方法提高了50%,对于一些重要的相互作用类别,预测精度甚至翻了一番。

然而,即使是AlphaFold3这样的先进工具,也并不能保证在所有情况下都能提高药物靶点亲和力(DTA)预测的性能。这可能是因为DTA预测的复杂性远超过了蛋白质结构的预测。DTA预测不仅需要考虑蛋白质的三维结构,还需要考虑药物分子的结构、药物和蛋白质之间的相互作用方式、药物分子和蛋白质在生物体内的动态行为等多种因素¹²³⁴。

因此,尽管蛋白质接触图谱的准确性对于理解蛋白质的三维结构非常重要,但它可能并不是影响DTA预测性能的关键因素。这也解释了为什么即使使用了不同的蛋白质接触图谱预测方法,如AlphaFold2、Pconsc4和ESM-1b,其准确性如何,对DTA预测的影响都不大。希望这个解释对你有所帮助!如果你有任何其他问题或需要进一步的解释,请随时告诉我!

Source: Conversation with Copilot, 28/05/2024
(1) AlphaFold 3 predicts the structure and interactions of all of life’s … https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/.
(2) Major AlphaFold upgrade offers boost for drug discovery - Nature. https://www.nature.com/articles/d41586-024-01383-z.
(3) Why AlphaFold 3 is stirring up so much buzz in pharma. https://www.pharmavoice.com/news/google-alphafold-3-drug-discovery-pharma-buzz/716496/.
(4) DeepMind Unveils AlphaFold3: Revolutionizing Protein Interactions with … https://thenota.com/post/2024/may/24/deepmind-unveils-alphafold3-revolutionizing-protein-interactions-with-ai/.
(5) Drug–target affinity prediction using graph neural network and contact maps. https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra02297g.
(6) Drug–target affinity prediction with extended graph learning … https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05698-6.
(7) PGraphDTA: Improving Drug Target Interaction Prediction using Protein … https://ar5iv.labs.arxiv.org/html/2310.04017.
(8) Drug–target affinity prediction using graph neural network and contact maps. https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra02297g.

三、随机配体与随机配体节点属性(配体一般指药物)

随机配体和随机配体节点属性之间存在显着差异。这表明,学习任务对配体数据的依赖性要大得多,也就是说,配体的数据质量和表示方式对预测结果的影响较大

1.什么是随机配体与配体节点属性

"随机配体"和"随机配体节点属性"是在研究中用来测试深度学习模型对配体数据依赖性的方法¹。

  • 随机配体:这是指从所用数据集中随机采样获得的配体的编码¹。在这种情况下,配体的编码并不是基于其真实的化学结构,而是随机选择的。这种方法可以帮助研究人员理解模型是否能够从随机数据中学习到有用的信息,或者模型的性能是否严重依赖于配体数据的质量和准确性。

  • 随机配体节点属性:这是指通过随机化输入配体图的节点特征获得的配体编码¹。在这种情况下,配体的化学结构(即图的拓扑结构)保持不变,但节点(代表原子)的属性(例如原子类型、电荷等)被随机化。这种方法可以帮助研究人员理解模型是否能够在节点属性被扰动的情况下保持良好的性能,或者模型的性能是否严重依赖于节点属性的准确性。

这两种方法都是用来测试深度学习模型对配体数据的敏感性和依赖性的。研究发现,当使用随机配体和随机配体节点属性时,模型的性能有显著差异,这表明学习任务在更大程度上依赖于配体数据¹。这也就是说,配体的数据质量和表示方式对预测结果的影响较大。

Source: Conversation with Copilot, 30/05/2024
(1) 从蛋白质到配体:解码用于结合亲和力预测的深度学习方法. https://www.x-mol.com/paper/1726959214536708096/t?recommendPaper=1526715.
(2) 深度学习在蛋白-配体亲和力预测中应用的探索 - 简书. https://www.jianshu.com/p/7060636815b3.
(3) Drug Discov Today|配体-蛋白的分子对接中的机器学习-腾讯云开发者社区-腾讯云. https://cloud.tencent.com/developer/article/1899807.

四、关于深度学习模型对特征的自动学习过程

深度学习在药物靶点亲和力(Drug-Target Affinity,DTA)预测中的应用。以下是主要观点的总结:

  • 深度学习方法可以在模型架构中集成特征表示和目标值预测。这意味着,深度学习模型可以同时处理特征提取和预测任务,而无需进行独立的特征工程步骤。

  • 这些模型可以自动学习化合物和蛋白质的有效表示。这是通过训练深度学习模型来识别和提取与DTA预测相关的重要特征。这些特征可能包括化合物的化学结构、蛋白质的氨基酸序列、以及它们之间的相互作用等。

1.是怎么进行自动学习的

当然可以。这里有一个具体的例子,叫做DeepCPI¹。DeepCPI是一个基于深度学习的框架,用于预测化合物和蛋白质的相互作用。它的工作原理如下:

  1. 语义分析和Word2vec方法:DeepCPI首先使用语义分析和Word2vec方法来获取化合物和蛋白质的低维特征表示¹。具体来说,它将化合物和蛋白质视为文本,将化合物的结构和蛋白质的氨基酸序列视为单词,然后使用Word2vec方法来学习这些"单词"的低维嵌入¹。

  2. 多模态深度神经网络(DNN)分类器:接下来,DeepCPI将这些低维特征输入到一个多模态深度神经网络(DNN)分类器中,预测化合物和蛋白质是否会相互作用¹。

通过这种方式,DeepCPI能够自动学习化合物和蛋白质的有效表示,并用这些表示来预测它们是否会相互作用。这个过程不需要人工设计特征,而是通过深度学习模型自动学习得到的¹。

希望这个例子能帮助你理解这个概念!如果你有任何其他问题或需要进一步的解释,请随时告诉我!

Source: Conversation with Copilot, 28/05/2024
(1) GPB|DeepCPI:基于深度学习的化合物和蛋白质相互作用预测框架-腾讯云开发者社区-腾讯云. https://cloud.tencent.com/developer/article/1785292.
(2) Drug Discov Today | 分子表示与性质预测中的深度学习方法-腾讯云开发者社区-腾讯云. https://cloud.tencent.com/developer/article/2165401.
(3) 【2021研电赛】基于深度学习的蛋白质与化合物结合性质预测 - 知乎. https://zhuanlan.zhihu.com/p/665870092.
(4) 生物信息学|DeepPurpose:药物靶标相互作用预测的深度学习库-CSDN博客. https://blog.csdn.net/ShenggengLin/article/details/110098120.
(5) undefined. https://academic.oup.com/nar/article/34/suppl_1/.

2.特征学习过程

深度学习模型,如用于预测化合物和蛋白质相互作用的模型,是通过训练数据集进行学习的。这个训练数据集通常包含一些已知的化合物和蛋白质,以及它们是否相互作用的信息。

具体来说,每个数据点在数据集中通常由一个化合物、一个蛋白质和一个标签组成。化合物和蛋白质的信息可以是它们的化学结构、氨基酸序列等特征,而标签则表示这个化合物和蛋白质是否相互作用。

在训练过程中,模型会尝试找到一种映射关系,将输入的化合物和蛋白质的特征映射到它们是否相互作用的标签。这个过程通常涉及到一些优化算法,如梯度下降,以及一些损失函数,如交叉熵损失。

通过这种方式,模型可以学习到化合物和蛋白质的特征与它们是否相互作用之间的关系,从而在给定新的化合物和蛋白质时,能够预测它们是否会相互作用。

在化合物和蛋白质的相互作用中,深度学习模型可能会学习到一些特定的模式或特征。这些特征可能包括但不限于以下几种

化学结构特征::例如,化合物的分子大小、形状、电荷分布、极性、亲水性或疏水性等。这些特征可以影响化合物与蛋白质的结合能力和方式。
氨基酸序列特征::例如,蛋白质的氨基酸序列、二级结构(如螺旋、折叠和转角)、三级结构(如蛋白质的空间结构)等。这些特征可以影响蛋白质的功能和与化合物的相互作用。
蛋白质-化合物相互作用特征::例如,化合物与蛋白质结合部位的形状和性质、化合物与蛋白质之间的距离、角度、键长、键角等。这些特征可以直接反映化合物与蛋白质的相互作用强度和方式。

2.深度神经网络模型对相互作用的预测DNN DML的学习。

总结

提示:这里对文章进行总结:

例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

相关文章:

论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》

基于深度学习模型的药物-靶标结合亲和力预测 这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。 文章目录 基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1…...

ArrayList和LinkedList对比,ArrayList使用注意事项

ArrayList和LinkedList对比,ArrayList使用注意事项 ArrayList 和 LinkedList 是 Java 中常用的两种集合类,它们在内部实现和性能上有一些重要的区别。 ArrayList: ArrayList 是基于动态数组实现的。它内部使用一个数组来存储元素,当数组空间…...

小熊家务帮day5-day7 客户管理模块1 (小程序认证,手机验证码认证,账号密码认证,修改密码,找回密码等)

客户管理模块 1.认证模块1.1 认证方式介绍1.1.1 小程序认证1.1.2 手机验证码登录1.1.3 账号密码认证 1.2 小程序认证1.2.1 小程序申请1.2.2 创建客户后端工程jzo2o-customer1.2.3 开发部署前端1.2.4 小程序认证流程1.2.4.1 customer小程序认证接口设计Controller层Service层调用…...

计算机图形学入门02:线性代数基础

1.向量(Vetors) 向量表示一个方向,还能表示长度(向量的摸)。一般使用单位向量表示方向。 向量加减:平行四边形法则、三角形法则。比卡尔坐标系描述向量,坐标直接相加。 1.1向量点乘(…...

函数:计算数组的元素和

一、计算数组的元素和 参数传递给函数时,实际上只有数组的首地址作为指针传递给了函数。 在函数定义中的int a[ ]等价于int *a。在只有地址信息的情况下,是无法知道数组里有多少个元素的,因此在计算数组中的元素和时,要加一个参…...

如何进行数据库分库分表

当数据库的数据量增长到一定程度,单一数据库或表可能会遇到性能瓶颈,此时分库分表是一种常见的解决方案。以下是如何进行数据库分库分表的详细步骤和考虑因素,结合了参考文章中的相关信息: 一、分库分表概述 分库分表是为了解决…...

Spring-Cloud-CircuitBreaker-Resilience4j (3.1.1)

介绍 Resilience4j 是一个专为函数式编程而设计的轻量级容错库。Resilience4j 提供高阶函数(装饰器),以增强任何功能接口、lambda 表达式或方法引用,包括断路器、速率限制器、重试或隔板。您可以在任何函数接口、lambda 表达式或…...

重构与优化-组织数据(3)

重构组织数据是一个系统性的工程,旨在改进数据的存储方式、访问效率、质量和可用性,以更好地支持业务运营、分析决策和未来发展。以下是重构组织数据的一些关键说明点: 目的与动机 提升效率:通过优化数据结构、减少冗余数据和改善索引策略,加快数据查询和处理速度。 增强…...

游戏交易平台源码游戏帐号交易平台系统源码

功能介绍 1:后台可以添加删除游戏分类 2:会员中心可以出售游戏币,账号,装备 3:后台可以对会员和商品进行管理 4:多商家入驻,商家发布信息 5:手机版功能可以生成APP 6:在线支付可支持微信和支…...

Matlab里面的浮点数与FPGA定点数的相互转化应用(含Matlab代码,封装成函数可直接调用)

微信公众号获取更多FPGA相关源码: 1.前言 Matlab里面计算通常用的是浮点数,而FPGA在做数字信号处理时,为了节约资源,常常使用的是定点数。在实践中,我们经常需要将Matlab实现中的算法,用FPGA进行实现。 …...

机器学习笔记——欠拟合、过拟合

欠拟合 将训练损失和测试损失都比较大的拟合叫欠拟合,那么他的预测精度很低 1.一般出现在模型的复杂度小于数据本身的复杂度导致的,这个可能就是模型对数据的分布和实际数据分布之间的差异,这个就可能需要更换模型 2.还可能出现在梯度下降算…...

【二进制部署k8s-1.29.4】七、验证master的安装

文章目录 简介 一.确认kubectl命令是否正常运行二.确认etcd安装是否正常运行三.确认kube-apiserver,kube-controller-manager,kube-scheduler安装是否正常四.配置apiserver和kubelet的访问授权五.master端安装脚本4.1.安装master端所需文件4.2.master快捷安装脚本 简介 本章节主…...

springboot获取当前数据库连接

要获取当前 Spring DataSource 的 URL,可以通过以下几种方法: 方法一:使用 JdbcTemplate 如果你使用的是 Spring 的 JdbcTemplate,可以通过 javax.sql.DataSource 获取连接,再获取它的 URL。 示例代码: …...

【学习笔记】Windows GDI绘图(九)Graphics详解(上)

文章目录 Graphics 定义创建Graphics对象的方法通过Graphics绘制不同的形状、线条、图像和文字等通过Graphics操作对象坐标 Graphics属性Clip(裁切/绘制区域)ClipBounds获取裁切区域矩形范围CompositiongMode合成方式CompositingQuality渲染质量DpiX和DpiY 水平、垂直分辨率Int…...

公告:公众号铁粉粉丝介绍以及说明

大家好,我是公众号博主--夏目 机械电气电机杂谈是我个人建立,为分享机械,电气,电机知识为主,闲谈杂聊社会时事,职场见闻,生活琐事,成长趣事,学习心得,读书观影…...

BioTech - 使用 CombFold 算法 实现 大型蛋白质复合物结构 的组装过程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/139242199 CombFold 是用于预测大型蛋白质复合物结构的组合和分层组装算法,利用 AlphaFold2 预测的亚基之间的成对相互作用。 CombFold 算法的关键特点包括: 组合和…...

代码随想录算法训练营第36期DAY46

DAY46 完全背包 在闫氏DP法里学过:第i个物品选k个,纸质直至不能选,k从0开始取。就有递推式了。 代码随想录的视频也看了。 518零钱兑换ii 注意与 目标和 那题区分开。 完全背包问题,正向遍历背包容量,就能实现“多次…...

港湾周评|李小加“刀刃向内”裁员

《港湾商业观察》李镭 近年来争议颇大的滴灌通风波不断。 在交100万付费上班不久,最新又被曝出裁员。这位前港交所总裁、金融圈鼎鼎大名的李小加,没想到成立不足三年便迎来了重大挑战。 日前,滴灌通确认了公司组织架构已经调整&#xff0c…...

超大功率光伏并网逆变器学习(三相)

1.超大功率用的IGBT开关频率通常很低,比如6KHz 2.线电压和相电压的关系 相电压 A AB线电压-CA线电压 相电压 B BC线电压-AB线电压 相电压 C CA线电压-BC线电压 3.坐标变换 ABC三相信号通过Clark坐标变换得到αβ两相静止信号,其中α与A相重合,β与α…...

大豆、棉花深度学习数据集大合集

最近收集了一大波关于大豆和棉花的深度学习数据集,主要有叶片的识别、分类、计数以及病害检测等。 数据集的价值 科研价值:这些数据集为植物学、农业信息技术、机器学习等领域的科研人员提供了宝贵的资源。它们可以用于训练和优化各种深度学习模型&…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...