当前位置: 首页 > news >正文

LabVIEW老程序功能升级:重写还是改进?

概述:面对LabVIEW老程序的功能升级,开发者常常面临重写与改进之间的选择。本文从多个角度分析两种方法的利弊,并提供评估方法和解决思路。

重写(重新开发)的优势和劣势:

优势:
  1. 代码清晰度高: 可以根据新的需求设计更清晰、模块化的代码结构。

  2. 性能优化: 可以利用新技术和优化算法提升程序性能。

  3. 修复潜在问题: 可以消除老程序中的潜在缺陷和不良设计。

  4. 技术升级: 可以采用最新的LabVIEW版本和开发工具,提高开发效率和功能实现。

劣势:
  1. 时间成本高: 重写需要投入大量时间和人力资源进行开发和测试。

  2. 风险大: 新开发的程序可能存在新的Bug和问题,增加项目风险。

  3. 对老程序依赖: 重写可能需要放弃原有的代码和逻辑,对于对老程序依赖较高的团队可能产生影响。

改进(修复、优化)的优势和劣势:

优势:
  1. 时间成本低: 相比重写,改进只需要修改和优化部分代码,成本较低。

  2. 保留原有逻辑: 可以保留原有程序的逻辑和功能,减少对现有系统的影响。

  3. 逐步迭代: 可以通过逐步改进的方式,降低项目风险和对系统的干扰。

劣势:
  1. 局限性: 改进可能受到原有代码结构和设计的限制,无法完全实现新需求。

  2. 效率低下: 长期修复和改进可能导致代码结构混乱,降低维护和开发效率。

  3. 无法解决根本问题: 改进可能无法解决原有程序的根本设计问题,影响系统稳定性和性能。

评估方法和解决思路:

  1. 需求评估: 对新需求进行全面评估,确定功能变更的范围和影响。

  2. 现有代码分析: 对老程序进行深入分析,评估其代码质量、可维护性和性能瓶颈。

  3. 风险评估: 分析重写和改进方法的风险和成本,评估项目的可行性和可接受性。

  4. 决策制定: 综合考虑各方面因素,选择最适合项目需求和团队能力的方法。

  5. 实施方案: 根据评估结果制定具体的实施计划和时间表,确保项目顺利进行。

I know someone has run into this before - NI Community

综上所述,选择重写或改进老程序应根据具体情况综合评估,权衡各种因素后做出决策。在实施过程中,可以采取渐进式的方法,逐步完善和优化程序,以降低项目风险和提高开发效率。

相关文章:

LabVIEW老程序功能升级:重写还是改进?

概述:面对LabVIEW老程序的功能升级,开发者常常面临重写与改进之间的选择。本文从多个角度分析两种方法的利弊,并提供评估方法和解决思路。 重写(重新开发)的优势和劣势: 优势: 代码清晰度高&a…...

chrome谷歌浏览器开启Gemini Nano模型

前提 确保您的操作系统语言设置为英语(美国) 可能还需要将 Chrome 浏览器的语言更改为英语(美国)。 下载dev或Canary版本Chrome Chrome Canary Chrome Dev 注意:确认您的版本高于 127.0.6512.0。 其中一个Chrome版本…...

C语言王国——内存函数

目录 1 memcpy函数 1.1 函数表达式 1.2 函数模拟 2 memmove函数 2.1 函数的表达式 2.2 函数模拟 3 memset函数 3.1 函数的表达式 3.2 函数的运用 4 memcmp函数 4.1函数的表达式: 4.2 函数的运用 5 结论 接上回我们讲了C语言的字符和字符串函数&#…...

【计算机组成原理】1.1计算机的软硬件组成(记录学习计算机组成原理)

文章目录 1.早期的冯诺依曼机2.早期冯诺依曼机的基本运行框图3.早期冯诺依曼机的特点4.现代计算机的结构5. 小结 本次及以后有关于计算机组成原理的文章,旨在做学习时的记录和知识的分享。不论是应对期末考试,还是考研都是很有帮助的。希望大家多多支持更…...

Qt xml学习之calculator-qml

1.功能说明:制作简易计算器 2.使用技术:qml,scxml 3.项目效果: 4.qml部分: import Calculator 1.0 //需要引用对应类的队友版本 import QtQuick 2.12 import QtQuick.Window 2.12 import QtQuick.Controls 1.4 import QtScxml…...

低代码开发系统是什么?它有那些部分组成?

低代码开发系统是什么?它有那些部分组成? 一、引言 在当今快速变化的商业环境中,企业对于快速响应市场需求、降低开发成本和提高开发效率的需求日益增强。低代码开发系统(Low-Code Development Platform)应运而生&am…...

2024年西安交通大学程序设计竞赛校赛

2024年西安交通大学程序设计竞赛校赛 文章目录 2024年西安交通大学程序设计竞赛校赛D瑟莉姆的宴会E: 雪中楼I: 命令行(待补)J:最后一块石头的重量(待补)K: 崩坏:星穹铁道(待补)M:生命游戏N: 圣诞树 D瑟莉姆的宴会 解题思路: ​ …...

【学习Day5】操作系统

✍🏻记录学习过程中的输出,坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞👍🏻收藏⭐评论✍🏻指点🙏 学习编辑文章的时间不太够用,先放思维导图,后续复习完善细节。...

学习小记录——python函数的定义和调用

今日小好运,未来有好运。🎁💖🫔 分享个人学习的小小心意,一起来看看吧 函数的定义 函数通常来说就是带名字的代码块,用于完成具体的工作,需要使用的时候调用即可,这不仅提高代码的…...

RHEL7.9修改分区

系统RHEL7.9 他因为安装软件,需要修改分区 进入超级用户root,输入lsblk 查看分区,可见465.8G系统盘sda下有三个物理卷,其中sda3下/home有410.6G,需要这部分拆分出200G软件和100G的数据库分区 备份/home 目录下文件 c…...

【Linux】命名管道

一、命名管道的原理 在前面的博客中,我们学习了匿名管道,了解到了两个具有血缘关系的进程之间是如何进行通信的?那么在没有血缘关系(毫不相关)的进程之间是如何进行通信的? 大致思路是一样的,我…...

IMX6Q基于linux4.1.15调试音频芯片tas2505

IMX6Q基于linux4.1.15调试音频芯片tas2505 1、开发环境2、初步想法3、开发过程4、tas2505重要的寄存器5、遇到的问题1、开发环境 芯片:IMX6Q (NXP系列) 内核版本:linux4.1.15 Ubuntu版本:16.04 目标模块:tas2505 2、初步想法 由于该电路是由外部晶振提供的时钟频率24.5…...

卷积常用网络

目录 1.AlexNet2.VGG3.GoogleNet4.ResNet5.MobileNet 1.AlexNet AlexNet是2012年ISLVRC 2012(ImageNet Large Scale Visual Recognition Challenge)竞赛的冠军网络。 首次利用 GPU 进行网络加速训练。使用了 ReLU 激活函数,而不是传统的 Si…...

Firebase Local Emulator Suite详解

文章目录 Firebase Local Emulator Suite 组件安装和使用步骤1. 安装 Firebase CLI2. 初始化 Firebase 项目3. 配置模拟器4. 启动模拟器5. 配置应用程序使用本地模拟器 常见用途 Firebase Local Emulator Suite 是一组本地服务,可以模拟 Firebase 平台的在线服务&am…...

计算机组成原理·存储系统疑点归纳

组原这门课有点学得不是很懂,现在快考试了,挑几个做错了的题分析、记录一下。 N o . 1 \mathit{No}.1 No.1  x x x、 y y y 为定点整数,其格式为 1 1 1 位符号位、 n n n 位数值位,若采用补码一位乘法实现乘法运算,则…...

在 GPU 上实现全规模文件系统加速

摘要 现代高性能计算和人工智能计算解决方案经常使用 GPU 作为其主要计算能力来源。这就为 GPU 应用程序的存储操作造成了严重的不平衡,因为每一个此类存储操作都必须向 CPU 发出信号并由 CPU 处理。在 GPU4FS 中,我们针对这种不平衡提出了一个彻底的解决…...

代码随想录算法训练营Day7|454.四数相加II、 383. 赎金信、15. 三数之和、 18. 四数之和

454.四数相加II 四个数组分成两组进行for循环,先用HashMap存储所有第一组for循环出现的和的次数。再进行第二组for循环,每一次得出的和判断其负数是否在map的key中,如果存在,就加上这个value。 class Solution {public int four…...

编译器屏障概述

文章目录 1. 前言2. 编译器内存屏障2.1 编译器内存访问重排序规则2.2 编译器屏障的几种形式2.2.1 显式编译器屏障2.2.2 隐式编译器屏障2.2.3 硬件内存屏障充当编译屏障2.2.4 编程语言内存模型提供的编译屏障 2.3 编译器内存屏障实例2.3.1 Linux spinlock 3. 结语4. 参考资料 1.…...

RUST宏编程入门

宏指示符 在Rust的宏编程中,宏可以接受多种类型的参数,称为“指示符”。这些指示符帮助宏识别不同类型的代码片段,并相应地处理它们。 这里列出全部指示符: blockexpr 用于表达式ident 用于变量名或函数名itemliteral 用于字面常…...

linux安装srs

获取srs cd /opt git clone -b 4.0release https://gitee.com/ossrs/srs.git cd srs/trunk 启动srs ./objs/srs -c conf/srs.conf ./etc/init.d/srs status 访问http://192.168.220.146:8080/出现下方图片说明安装成功 点击进入SRS控制台看到下方图片...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...