当前位置: 首页 > news >正文

计算机组成原理·存储系统疑点归纳

  组原这门课有点学得不是很懂,现在快考试了,挑几个做错了的题分析、记录一下。


N o . 1 \mathit{No}.1 No.1 x x x y y y 为定点整数,其格式为 1 1 1 位符号位、 n n n 位数值位,若采用补码一位乘法实现乘法运算,则最多需要_______次加法运算。
A. n − 1 n-1 n1
B. n n n
C. n + 1 n+1 n+1
D. n + 2 n+2 n+2
答案 C

总结一下原码一位乘法、补码一位乘法中,到底进行了多少次移位和多少次加法
首先来看原码一位乘法

原码一位乘法中,加法的次数等于移位的次数。可以看到,如果原数据包含符号位一共有 k k k 位,那么最后移位到只剩下符号位,即移位 k − 1 k-1 k1 次,加法 k − 1 k-1 k1 次。
再来看补码一位乘法

补码一位乘法中,加法比移位多进行 1 1 1 次。如果原数据包含符号位一共有 k k k 位,那么会先在后面加一位“0”得到 k + 1 k+1 k+1 位的“乘数”参与运算。最后移到只剩下 2 2 2 位,即移位 k − 1 k-1 k1 次,加法 k k k 次。
将上述结果列成下表:

乘法类型数据位数(包括符号位)移位次数加法次数
原码一位乘法 k k k k − 1 k-1 k1 k − 1 k-1 k1
补码一位乘法 k k k k − 1 k-1 k1 k k k

套用上表的结果,此题属于补码一位乘法,且 k = n + 1 k=n+1 k=n+1,因此加法次数为 k = n + 1 k=n+1 k=n+1


N o . 2 \mathit{No}.2 No.2 某容量为 256 M B 256\mathrm{\ MB} 256 MB 的存储器由若干 4 M × 8 \mathrm{4M\times8} 4M×8 位的 DRAM 芯片构成,该 DRAM 芯片的地址引脚和数据引脚总数是______。
A. 19 19 19
B. 22 22 22
C. 30 30 30
D. 36 36 36
答案 A

此题容易误选 C。该 DRAM 芯片的数据引脚数肯定是 8 8 8,但是地址引脚数是 11 11 11。因为 DRAM 采用的地址复用技术,分两次将行地址 11 11 11 位)与列地址 11 11 11 位)送入芯片中。如果是 SRAM,就需要有 22 22 22 个地址引脚。


N o . 3 \mathit{No}.3 No.3 假定用若干个 2 K × 4 2\mathrm K×4 2K×4 位的芯片组成一个 8 K × 8 8\rm K×8 8K×8 位的存储器,则地址 0 B 1 F H \rm{0B1FH} 0B1FH 所在芯片的最小地址是______。
A. 0000 H \rm{0000H} 0000H
B. 0600 H \rm{0600H} 0600H
C. 0700 H \rm{0700H} 0700H
D. 0800 H \rm{0800H} 0800H
答案 D

这个题首先值得一提的 8 K × 8 \rm{8K}\times 8 8K×8,它表示存储器有 8 K 8\rm K 8K 个存储单元,每个单元有 8 8 8 位(当初就是这里没弄懂),相当于是按字节编址了。可以在脑海里构想一下芯片的组织方式,首先是 2 2 2 2 K × 4 2\rm K\times 4 2K×4 的芯片位拓展为 2 K × 8 2\rm K\times 8 2K×8,然后用 4 4 4 个拓展后的芯片来进行字拓展。这 4 4 4 个拓展芯片就将存储器地址分为了四个部分:

存储器地址位于第几个拓展芯片( 2 K × 8 2\rm K\times 8 2K×8 芯片)
0000 H ∼ 07 F F H \rm{0000H\sim 07FFH} 0000H07FFH 0 0 0
0800 H ∼ 0 F F F H \rm{0800H\sim 0FFFH} 0800H0FFFH 1 1 1
1000 H ∼ 17 F F H \rm{1000H\sim 17FFH} 1000H17FFH 2 2 2
1800 H ∼ 1 F F F H \rm{1800H\sim 1FFFH} 1800H1FFFH 3 3 3

自然, 0 B 1 F H \rm{0B1FH} 0B1FH 位于第 1 1 1 个拓展芯片内,该芯片的最小地址是 0800 H \rm{0800H} 0800H


N o . 4 \mathit{No}.4 No.4 假定 DRAM 芯片中存储阵列的行数为 r r r、列数为 c c c,对于一个 2K×1 位的 DRAM 芯片,为保证其地址引脚数最少,并尽量减少刷新开销,则 r r r c c c 的取值分别是______。
A. 2048 2048 2048 1 1 1
B. 64 64 64 32 32 32
C. 32 32 32 64 64 64
D. 1 1 1 2048 2048 2048
答案 C

这个题当初是不会做,主要是涉及到一个考点,那就是 DRAM 因为电容容易漏电需要定期刷新数据,且刷新方式为按行刷新。因此减少刷新开销就是降低 r r r 的值。


N o . 5 \mathit{No}.5 No.5 下列关于缺页处理的叙述中,错误的是______。
A. 缺页是在地址转换时 CPU 检测到的一种异常
B. 缺页处理由操作系统提供的缺页处理程序完成
C. 缺页处理程序根据页故障地址从外存读入所缺失的页
D. 缺页处理完成后执行发生缺页的指令的下一条指令
答案 D

缺页处理完成后,缺页处理程序返回到原来的进程,驱使引起缺页的程序重新启动。所以是重新执行发生缺页的指令,而不是执行它的下一条指令。


N o . 6 \mathit{No}.6 No.6 下列选项中,属于指令集体系结构(ISA)规定的内容是______。
I.指令字格式和指令类型
II.CPU的时钟周期
Ⅲ.通用寄存器个数和位数
IV.加法器的进位方式
A. 仅I、II
B. 仅I、II、Ⅲ
C. 仅Ⅱ、IV
D. 仅I、Ⅲ、IV
答案 B

加法器的进位方式,如是串行加法器还是并行加法器,是属于微架构(Microarchitecture)的内容。但是也有说 CPU 的时钟周期是微架构规定的,见这篇文章,这个确实有争议。不过I、Ⅲ毫无疑问是 ISA 的范畴。


N o . 7 \mathit{No}.7 No.7 二维交叉奇偶校验编码不能全部检测以下哪种出错?
A. 2 2 2 位错
B. 3 3 3 位错
C. 4 4 4 位错
D. 5 5 5 位错
E. 6 6 6 位错
答案 CE

当初没有想到 6 6 6 位错会有哪些漏网之鱼,后面通过问老师得知下面这种 6 6 6 位错就能够逃脱检测:
[ ⋮ ⋮ ⋮ ⋯ D D D ⋯ ⋯ D D D ⋯ ⋯ D D D ⋯ ⋮ ⋮ ⋮ ] \begin{bmatrix}&\vdots&\vdots&\vdots\\ \cdots&\red{D}&\red D& D&\cdots\\ \cdots&\red D& D& \red D&\cdots\\ \cdots&D&\red D&\red D&\cdots\\ &\vdots&\vdots&\vdots\end{bmatrix} DDDDDDDDD

D D D 表示正常数据, D \red D D 表示出错的数据。这种情况下,每行每列的校验码都检测不出错误。实际上,二维交叉奇偶校验码不能全部检测的错误是除了 2 2 2 位错之外的所有偶数位错。

相关文章:

计算机组成原理·存储系统疑点归纳

组原这门课有点学得不是很懂,现在快考试了,挑几个做错了的题分析、记录一下。 N o . 1 \mathit{No}.1 No.1  x x x、 y y y 为定点整数,其格式为 1 1 1 位符号位、 n n n 位数值位,若采用补码一位乘法实现乘法运算,则…...

在 GPU 上实现全规模文件系统加速

摘要 现代高性能计算和人工智能计算解决方案经常使用 GPU 作为其主要计算能力来源。这就为 GPU 应用程序的存储操作造成了严重的不平衡,因为每一个此类存储操作都必须向 CPU 发出信号并由 CPU 处理。在 GPU4FS 中,我们针对这种不平衡提出了一个彻底的解决…...

代码随想录算法训练营Day7|454.四数相加II、 383. 赎金信、15. 三数之和、 18. 四数之和

454.四数相加II 四个数组分成两组进行for循环,先用HashMap存储所有第一组for循环出现的和的次数。再进行第二组for循环,每一次得出的和判断其负数是否在map的key中,如果存在,就加上这个value。 class Solution {public int four…...

编译器屏障概述

文章目录 1. 前言2. 编译器内存屏障2.1 编译器内存访问重排序规则2.2 编译器屏障的几种形式2.2.1 显式编译器屏障2.2.2 隐式编译器屏障2.2.3 硬件内存屏障充当编译屏障2.2.4 编程语言内存模型提供的编译屏障 2.3 编译器内存屏障实例2.3.1 Linux spinlock 3. 结语4. 参考资料 1.…...

RUST宏编程入门

宏指示符 在Rust的宏编程中,宏可以接受多种类型的参数,称为“指示符”。这些指示符帮助宏识别不同类型的代码片段,并相应地处理它们。 这里列出全部指示符: blockexpr 用于表达式ident 用于变量名或函数名itemliteral 用于字面常…...

linux安装srs

获取srs cd /opt git clone -b 4.0release https://gitee.com/ossrs/srs.git cd srs/trunk 启动srs ./objs/srs -c conf/srs.conf ./etc/init.d/srs status 访问http://192.168.220.146:8080/出现下方图片说明安装成功 点击进入SRS控制台看到下方图片...

IO流(2)

缓冲流 字节缓冲流 利用字节缓冲区拷贝文件,一次读取一个字节: public class test {public static void main(String [] args) throws IOException {//利用字节缓冲区来拷贝文件BufferedInputStream bisnew BufferedInputStream(new FileInputStream(&…...

【docker】docker启动bitnami/mysql

说明:-v 宿主机目录:docker容器目录,-p 同理 注意:/opt/bitnami/mysql/conf/bitnami 目录自定义conf的目录,不能使用原有的/opt/bitnami/mysql/conf 目录。 容器启动后可在宿主机的/宿主/mysql8.0/conf,添加my_custom.…...

边缘计算、云计算、雾计算在物联网中的作用

边缘计算和雾计算不像云那样广为人知,但可以为企业和物联网公司提供很多帮助。这些网络解决了物联网云计算服务无法解决的许多问题,并使分散的数据存储适应特定的需求。让我们分别研究一下边缘计算、雾计算和云计算的优势。 雾计算的好处 低延迟。雾网络…...

【c语言】探索内存函数

探索内存函数 memcpy函数memmove函数memset函数memcmp函数: memcpy函数 memcpy函数声明: void * memcpy ( void * destination, const void * source, size_t num );将source空间下的num个字符复制到dest中去 函数的使用: 将字符数组a的5字…...

day46 完全背包理论基础 518. 零钱兑换 II 377. 组合总和 Ⅳ

完全背包理论基础 有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。 01背包内嵌的循环是从…...

【linux】运维-基础知识-认知hahoop周边

1. HDFS HDFS(Hadoop Distributed File System)–Hadoop分布式文件存储系统 源自于Google的GFS论文,HDFS是GFS的克隆版 HDFS是Hadoop中数据存储和管理的基础 他是一个高容错的系统,能够自动解决硬件故障,eg&#xff1a…...

Python自动实时查询预约网站的剩余名额并在有余额时发邮件提示

本文介绍基于Python语言,自动、定时监测某体检预约网站中指定日期的体检余额,并在有体检余额时自动给自己发送邮件提醒的方法。 来到春招末期,很多单位进入了体检流程。其中,银行(尤其是四大行)喜欢“海检”…...

Flutter 验证码输入框

前言: 验证码输入框很常见:处理不好 bug也会比较多 想实现方法很多,这里列举一种完美方式,完美兼容 软键盘粘贴方式 效果如下: 之前使用 uniapp 的方式实现过一次 两种方式(原理相同)&#xff1…...

如何从0到设计一个CRM系统

什么是CRM 设计开始之前,先来了解一下什么是CRM。CRM(Customer Relationship Management)是指通过建立和维护与客户的良好关系,达到满足客户需求、提高客户满意度、增加业务收入的一种管理方法和策略。CRM涉及到跟踪和管理客户的所…...

Numba 的 CUDA 示例 (2/4):穿针引线

本教程为 Numba CUDA 示例 第 2 部分。 按照本系列从头开始使用 Python 学习 CUDA 编程 介绍 在本系列的第一部分中,我们讨论了如何使用 GPU 运行高度并行算法。高度并行任务是指任务完全相互独立的任务,例如对两个数组求和或应用任何元素函数。 在本教…...

项目的各个阶段如何编写标准的Git commit消息

标准提交消息格式 一个标准的提交消息应包括三部分:标题(summary)、正文(description)和脚注(footer)。 1. 标题(Summary) 简洁明了,不超过50个字符。使用…...

Python课设-学生信息管理系统

一、效果展示图 二、前端代码 1、HTML代码 <1>index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">…...

openssl 常用命令demo

RSA Private Key的结构&#xff08;ASN.1&#xff09; RSAPrivateKey :: SEQUENCE { version Version, modulus INTEGER, -- n publicExponent INTEGER, -- e privateExponent INTEGER, -- d prime1 INTEGER, -- …...

【Linux】Linux基本指令2

目录 1.man指令&#xff08;重要&#xff09;&#xff1a; 2.echo指令 3.cp指令&#xff08;重要&#xff09;&#xff1a; 4.mv指令 5.cat指令/echo指令重定向 6.more指令 7.less指令&#xff08;重要&#xff09; 8.head指令 9.tail指令 我们接着上一篇&#xff1a;h…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里

写一个shell脚本&#xff0c;把局域网内&#xff0c;把能ping通的IP和不能ping通的IP分类&#xff0c;并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...