集成算法实验与分析(软投票与硬投票)
概述
目的:让机器学习效果更好,单个不行,集成多个
集成算法
Bagging:训练多个分类器取平均
f ( x ) = 1 / M ∑ m = 1 M f m ( x ) f(x)=1/M\sum^M_{m=1}{f_m(x)} f(x)=1/M∑m=1Mfm(x)
Boosting:从弱学习器开始加强,通过加权来进行训练
F m ( x ) = F m − 1 ( x ) + a r g m i n h ∑ i = 1 n L ( y i , F m − 1 ( x i ) + h ( x i ) ) F_m(x)=F_{m-1}(x)+argmin_h\sum^n_{i=1}L(y_i,F_{m-1}(x_i)+h(x_i)) Fm(x)=Fm−1(x)+argminh∑i=1nL(yi,Fm−1(xi)+h(xi))
(加入一棵树,新的树更关注之前错误的例子)
Stacking:聚合多个分类或回归模型(可以分阶段来做)
Bagging模型(随机森林)
全称: bootstrap aggregation(说白了就是并行训练一堆分类器)
最典型的代表就是随机森林,现在Bagging模型基本上也是随机森林。

随机:数据采样随机,每棵树只用部分数据;数据有多个特征(属性)组成,每棵树随机选择部分特征。随机是为了使得每个分类器拥有明显差异性。
森林:很多个决策树并行放在一起
如何对所有树选择最终结果?分类的话可以采取少数服从多数,回归的话可以采用取平均值。
集成基本思想
训练时用多种分类器一起完成同一份任务

测试时对待测试样本分别通过不同的分类器,汇总最后的结果

import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moonsX,y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
plt.plot(X[:,0][y==0],X[:,1][y==0],'yo',alpha = 0.6)
plt.plot(X[:,0][y==0],X[:,1][y==1],'bs',alpha = 0.6)

投票策略:软投票与硬投票
- 硬投票:直接用类别值,少数服从多数
- 软投票:各自分类器的概率值进行加权平均,或者自己就去概率值最大的作为结果
硬投票实验
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC# 三种分类器,逻辑回归,随机森林,支持向量机
log_clf = LogisticRegression(random_state=42)
rnd_clf = RandomForestClassifier(random_state=42)
svm_clf = SVC(random_state=42)voting_clf = VotingClassifier(estimators =[('lr',log_clf),('rf',rnd_clf),('svc',svm_clf)],voting='hard')
voting_clf.fit(X_train,y_train)

from sklearn.metrics import accuracy_score
print('三种分类器的结果')
for clf in (log_clf,rnd_clf,svm_clf):clf.fit(X_train,y_train)y_pred = clf.predict(X_test)print (clf.__class__.__name__,accuracy_score(y_test,y_pred))
print('集成分类的硬投票结果(一般会在效果上有微量提升,但不会太大)')
voting_clf.fit(X_train,y_train)
y_pred = voting_clf.predict(X_test)
print (voting_clf.__class__.__name__,accuracy_score(y_test,y_pred))
结果输出:
三种分类器的结果
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
集成分类的结果(一般会在效果上有微量提升,但不会太大)
VotingClassifier 0.912
软投票实验
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVClog_clf = LogisticRegression(random_state=42)
rnd_clf = RandomForestClassifier(random_state=42)
svm_clf = SVC(probability = True,random_state=42)voting_clf = VotingClassifier(estimators =[('lr',log_clf),('rf',rnd_clf),('svc',svm_clf)],voting='soft')
from sklearn.metrics import accuracy_score
print('三种分类器的结果')
for clf in (log_clf,rnd_clf,svm_clf):clf.fit(X_train,y_train)y_pred = clf.predict(X_test)print (clf.__class__.__name__,accuracy_score(y_test,y_pred))
print('集成分类的软投票结果(一般会在效果上有微量提升,但不会太大)')
voting_clf.fit(X_train,y_train)
y_pred = voting_clf.predict(X_test)
print (voting_clf.__class__.__name__,accuracy_score(y_test,y_pred))
结果输出:
三种分类器的结果
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
集成分类的硬投票结果(一般会在效果上有微量提升,但不会太大)
VotingClassifier 0.92
总结:软投票要求必须各个分别器都能得出概率值,一般来说软投票效果更好一些
相关文章:
集成算法实验与分析(软投票与硬投票)
概述 目的:让机器学习效果更好,单个不行,集成多个 集成算法 Bagging:训练多个分类器取平均 f ( x ) 1 / M ∑ m 1 M f m ( x ) f(x)1/M\sum^M_{m1}{f_m(x)} f(x)1/M∑m1Mfm(x) Boosting:从弱学习器开始加强&am…...
网络数据库后端框架相关面试题
面试是工作的第一步,面试中面试官所提出的问题千奇百怪,其中关于网络数据库后端框架面试题汇总如下: 1,关系型数据库和非关系型数据库的区别 关系型数据库主要有 MYsql Iracle SQLSever等 相对于非关系型数据库的优势为查询效率…...
模拟集成电路(6)----单级放大器(共源共栅级 Cascode Stage)
模拟集成电路(6)----单级放大器(共源共栅级 Cascode Stage) 大信号分析 对M1 V x ≥ V i n − V T H 1 V x V B − V G S 2 V B ≥ V i n − V T H 1 V G S 2 V_{x}\geq V_{in}-V_{TH1}\quad V_{x}V_{B}-V_{GS2}\\V_{B}\geq V_{in}-V_{TH1}V_{GS2} Vx…...
docker以挂载目录启动容器报错问题的解决
拉取镜像: docker pull elasticsearch:7.4.2 docker pull kibana:7.4.2 创建实例: mkdir -p /mydata/elasticsearch/configmkdir -p /mydata/elasticsearch/dataecho "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasti…...
MySQL—函数—流程控制函数(基础)
一、引言 接下来,我们就进入函数的最后一个部分:流程函数。而流程控制函数在我们的日常开发过程是很有用的。 流程控制函数在我们 sql 语句当中,经常用来实现条件的筛选,从而提高语句的一个执行效率。 我们主要介绍以下4个流程控…...
2023年全国职业院校技能大赛(高职组)“云计算应用”赛项赛卷7(私有云)
#需要资源(软件包及镜像)或有问题的,可私聊博主!!! #需要资源(软件包及镜像)或有问题的,可私聊博主!!! #需要资源(软件包…...
Jenkins、GitLab部署项目
1、安装JDK 1.1、下载openJdk11 yum -y install fontconfig java-11-openjdk1.2、查看安装的版本号 java -version1.3、配置环境变量 vim /etc/profile在最底部添加即可 export JAVA_HOME/usr/lib/jvm/java-11-openjdk-11.0.23.0.9-2.el7_9.x86_64 export PATH$JAVA_HOME/…...
21.Redis之分布式锁
1.什么是分布式锁 在⼀个分布式的系统中, 也会涉及到多个节点访问同⼀个公共资源的情况. 此时就需要通过 锁 来做互斥控制, 避免出现类似于 "线程安全" 的问题. ⽽ java 的 synchronized 或者 C 的 std::mutex, 这样的锁都是只能在当前进程中⽣效, 在分布式的这种多…...
Mysql基础学习:mysql8 JSON字段查询操作
文章目录 一、查询JSON中某个属性值为XXX的数据量1、方式一2、方式二 二、查询的JSON中的value并去除双引号 一、查询JSON中某个属性值为XXX的数据量 1、方式一 select count(*)from table_namewhere JSON_CONTAINS(json-> $.filed1, "xxx")or JSON_CONTAINS(jso…...
搭建基于Django的博客系统数据库迁移从Sqlite3到MySQL(四)
上一篇:搭建基于Django的博客系统增加广告轮播图(三) 下一篇:基于Django的博客系统之用HayStack连接elasticsearch增加搜索功能(五) Sqlite3数据库迁移到MySQL 数据库 迁移原因 Django 的内置数据库 SQL…...
24年护网工具,今年想参加护网的同学要会用
24年护网工具集 吉祥学安全知识星球🔗http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247483727&idx1&sndb05d8c1115a4539716eddd9fde4e5c9&chksmc0e47813f793f105017fb8551c9b996dc7782987e19efb166ab665f44ca6d900210e6c4c0281&scene21…...
解决TrueNas Scale部署immich后人脸识别失败,后台模型下载异常,immich更换支持中文搜索的CLIP大模型
这个问题搞了我几天终于解决了,搜遍网上基本没有详细针对TrueNas Scale部署immich应用后,CLIP模型镜像下载超时导致人脸识别失败,以及更换支持中文识别的CLIP模型的博客。 分析 现象:TrueNas Scale安装immich官方镜像应用后&…...
面试高频问题----2
一、进程、线程、协程有什么区别? 1.进程:进程是操作系统中独立运行的程序实例,每个进程都有自己的内存空间和系统资源;进程之间相互独立,每个进程有自己的内存地址空间,一个进程无法直接访问另一个进程的…...
Nginx的配置文件-详细使用说明
Nginx的配置文件是Nginx服务器运行的核心,它决定了Nginx如何响应和处理各种请求。以下是对Nginx配置文件(通常名为nginx.conf)的详细解析,按照常见的结构和配置项进行分类: 1. 全局块 user:指定Nginx运行的用户和用户组。例如:user nginx;worker_processes:指定工作进…...
YOLOv5改进 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 轻量级卷积神经网络由于其低计算预算限制了CNNs的深度(卷积层数)和宽度(通道数),…...
23、linux系统文件和日志分析
linux文件系统与日志分析 文件时存储在硬盘上的,硬盘上的最小存储单位是扇区,每个扇区大大小是512字节。 inode:元信息(文件的属性 权限,创建者,创建日期等) block:块,…...
安装VS2017后,离线安装Debugging Tools for Windows(QT5.9.2使用MSVC2017 64bit编译器)
1、背景 安装VS2017后,Windows Software Development Kit - Windows 10.0.17763.132的Debugging Tools for Windows默认不会安装,如下图。这时在QT5.9.2无法使用MSVC2017 64bit编译器。 2、在线安装 如果在线安装参考之前的文章: Qt5.9.2初…...
路由策略实验2
对R7,重发布直连路由 对R2,做双向 对R3同样 先不改优先级 查看,知道所有给R3的路由为151,全部为OSPF。 知道了是错误的,先把3,4之间的线路断掉 接着对R3,让优先级全部回到100(displa…...
Linux网络-守护进程版字典翻译服务器
文章目录 前言一、pid_t setsid(void);二、守护进程翻译字典服务器(守护线程版)效果图 前言 根据上章所讲的后台进程组和session会话,我们知道如果可以将一个进程放入一个独立的session,可以一定程度上守护该进程。 一、pid_t se…...
Python 推导式详解:高效简洁的数据处理技巧
推导式是 Python 提供的一种简洁而强大的语法,用于创建列表、集合和字典。它可以让代码更简洁、更易读,同时提高运行效率。 基本语法 列表推导式 基本语法: [expression for item in iterable if condition]示例: # 生成平方…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
分布式计算框架学习笔记
一、🌐 为什么需要分布式计算框架? 资源受限:单台机器 CPU/GPU 内存有限。 任务复杂:模型训练、数据处理、仿真并发等任务耗时严重。 并行优化:通过任务拆分和并行执行提升效率。 可扩展部署:适配从本地…...
RMQ 算法详解(区间最值问题)
RMQ 算法详解(区间最值问题) 问题介绍解决方法暴力法ST表法基本思想算法步骤C实现 问题介绍 RMQ问题是OI中经常遇到的问题,主要是一下形式: 给你一堆数,不断的对里面的数进行操作,例如:让某个…...
