当前位置: 首页 > news >正文

Java 雪花算法:分布式唯一ID生成的魔法秘籍

欢迎来到本次博客的旅程,今天我们要揭开一个神秘算法的面纱,它就是在分布式系统中广受欢迎的——雪花算法(Snowflake)。这个算法不是用来预测雪花的形状,而是用来生成唯一的ID,保证在分布式系统中,每一个ID都是独一无二的。接下来,我将带领大家一步一步深入了解这个神奇的算法,并教你如何在Java中实现它。准备好了吗?让我们开始吧!

一、什么是雪花算法?

雪花算法由Twitter在2010年发布,用于生成分布式系统中的唯一ID。想象一下,你有一大片雪花,每一片都独一无二,这就是雪花算法的工作原理。它生成的ID不仅唯一,还按时间有序。

雪花算法生成的ID是一个64位的整数,这个整数由以下几部分组成:

  • 1位的符号位,总是0,表示正数。
  • 41位的时间戳,精确到毫秒,可以使用约69年。
  • 10位的机器ID,表示最多支持1024个节点。
  • 12位的序列号,每毫秒可以生成4096个不同的ID。

这样组合在一起,就形成了一个唯一的ID。

二、为什么要用雪花算法?

在分布式系统中,生成唯一的ID是一个常见问题。常见的方法有UUID和数据库自增ID,但它们都有各自的缺点:

  • UUID:虽然唯一,但长度较长,不利于存储和索引。
  • 数据库自增ID:需要依赖数据库,不利于分布式扩展。

相比之下,雪花算法生成的ID短小精悍,按时间有序,非常适合在分布式系统中使用。

三、雪花算法的工作原理

让我们通过一个示例,详细了解雪花算法是如何工作的。

假设我们在2024年1月1日开始使用雪花算法生成ID,机器ID为1,每毫秒生成的序列号从0开始。

  1. 获取当前时间戳:获取当前时间戳(以毫秒为单位),减去一个固定的时间起点(例如2024年1月1日的时间戳),得到时间差。
  2. 拼接机器ID和序列号:将机器ID和序列号拼接在时间戳之后,形成一个64位的ID。

举个例子,如果当前时间戳是1000毫秒,机器ID是1,序列号是0,那么生成的ID就是:

ID = 时间戳 << 22 | 机器ID << 12 | 序列号= 1000 << 22 | 1 << 12 | 0= 4194304000
四、Java实现雪花算法

接下来,我们在Java中实现雪花算法。这个实现包含了基本的ID生成逻辑,以及一些必要的同步控制,确保在高并发环境下的正确性。

public class SnowflakeIdGenerator {// 起始时间戳private final long twepoch = 1577836800000L; // 2020-01-01// 机器ID所占的位数private final long workerIdBits = 5L;// 数据中心ID所占的位数private final long datacenterIdBits = 5L;// 支持的最大机器IDprivate final long maxWorkerId = -1L ^ (-1L << workerIdBits);// 支持的最大数据中心IDprivate final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);// 序列在ID中占的位数private final long sequenceBits = 12L;// 机器ID向左移12位private final long workerIdShift = sequenceBits;// 数据中心ID向左移17位private final long datacenterIdShift = sequenceBits + workerIdBits;// 时间戳向左移22位private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;// 生成序列的掩码,这里为4095private final long sequenceMask = -1L ^ (-1L << sequenceBits);private long workerId; // 机器IDprivate long datacenterId; // 数据中心IDprivate long sequence = 0L; // 序列号private long lastTimestamp = -1L; // 上次生成ID的时间戳// 构造函数public SnowflakeIdGenerator(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}// 生成IDpublic synchronized long nextId() {long timestamp = timeGen();if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0L;}lastTimestamp = timestamp;return ((timestamp - twepoch) << timestampLeftShift) |(datacenterId << datacenterIdShift) |(workerId << workerIdShift) |sequence;}// 阻塞到下一个毫秒,直到获得新的时间戳protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}// 返回当前时间,以毫秒为单位protected long timeGen() {return System.currentTimeMillis();}
}

以上代码中,SnowflakeIdGenerator 类实现了雪花算法的核心逻辑。让我们来逐步解释每一个部分。

  • 变量定义:定义了机器ID、数据中心ID、序列号以及时间戳等变量。
  • 构造函数:初始化机器ID和数据中心ID,并进行合法性检查。
  • nextId 方法:生成唯一ID,使用同步关键字保证线程安全。
  • tilNextMillis 方法:阻塞直到下一毫秒,以防止生成重复ID。
  • timeGen 方法:获取当前时间戳。
五、使用示例

现在,我们可以创建 SnowflakeIdGenerator 的实例,并生成唯一ID了。

public class Main {public static void main(String[] args) {SnowflakeIdGenerator idGenerator = new SnowflakeIdGenerator(1, 1);for (int i = 0; i < 10; i++) {long id = idGenerator.nextId();System.out.println("Generated ID: " + id);}}
}

以上代码将生成10个唯一ID,并打印到控制台。

六、结论

雪花算法在分布式系统中生成唯一ID方面表现卓越。通过详细的解释和Java实现,希望你已经掌握了这个强大的工具。无论你是在开发大型分布式系统,还是需要生成唯一ID,雪花算法都是一个值得信赖的选择。

希望这篇博客不仅帮助你理解了雪花算法,还能让你在实现过程中获得乐趣。如果你有任何问题或建议,欢迎在评论区留言,我们一起探讨!

祝编码愉快!

相关文章:

Java 雪花算法:分布式唯一ID生成的魔法秘籍

欢迎来到本次博客的旅程&#xff0c;今天我们要揭开一个神秘算法的面纱&#xff0c;它就是在分布式系统中广受欢迎的——雪花算法&#xff08;Snowflake&#xff09;。这个算法不是用来预测雪花的形状&#xff0c;而是用来生成唯一的ID&#xff0c;保证在分布式系统中&#xff…...

mybatis配置环境流程

mybatis配置环境流程 为啥要用mybatis&#xff1a;通过Mybatis实现快速访问后端pgsql、mysql等数据库。 1.修改pom.xml&#xff0c;添加mybatis相关依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-s…...

UE5增强输入系统入门

UE4直接在项目设置里设置的轴映射和操作映射在UE5中被标记为废弃&#xff0c;改为使用增强输入系统。 这两天学习了下蓝图和c中增强输入系统的使用&#xff0c;在这里分享一下。 学习使用的模板是第三人称模板(蓝图/c)&#xff0c;代码蓝图都参考的模板。 增强输入系统 UE5…...

Python 语法好乱:深度解析与应对策略

Python 语法好乱&#xff1a;深度解析与应对策略 Python&#xff0c;作为一门简洁明了的编程语言&#xff0c;广受编程初学者的喜爱。然而&#xff0c;随着学习的深入&#xff0c;许多学习者会发现Python的语法似乎并不像初看起来那么简单&#xff0c;甚至有时会感到“好乱”。…...

移动端框架:加速移动应用开发与提升跨平台兼容性

在当今快速发展的移动应用领域&#xff0c;开发者们面临着如何快速构建、维护并发布跨平台应用的挑战。为了应对这一挑战&#xff0c;移动端框架应运而生&#xff0c;它们不仅加速了移动应用的开发流程&#xff0c;还提升了应用的跨平台兼容性&#xff0c;并确保了应用性能与原…...

Linux systemctl:掌握软件启动和关闭的利器

Linux systemctl&#xff1a;掌握软件启动和关闭的利器 在 Linux 操作系统中&#xff0c;systemctl 是一个强大的工具&#xff0c;用于管理系统服务的启动、停止和状态监控。本篇博客将深入介绍 systemctl 的使用方法&#xff0c;帮助你更好地掌握软件的启动和关闭。 1. syst…...

Jmeter干货分享:当你的Log viewer不显示日志时,可能是引入的Jar包冲突导致

问题描述 近期使用Jmeter时发现了一个非常奇怪的问题&#xff0c;就是Jmeter是可以正常使用运行脚本&#xff0c;但是在Log viewer中确没有任何日志&#xff0c;如下图&#xff1a; 问题排查过程 真是百思不得其解啊&#xff0c;在网上各种获取资料&#xff0c;大多数都是说跟…...

网络编程TCP

White graces&#xff1a;个人主页 &#x1f649;专栏推荐:Java入门知识&#x1f649; &#x1f649; 内容推荐:Java网络编程(下)&#x1f649; &#x1f439;今日诗词: 壮士当唱大风哥, 宵小之徒能几何&#xff1f;&#x1f439; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微…...

C++中的迭代器

目录 摘要 迭代器类别 1. 输入迭代器&#xff08;Input Iterator&#xff09; 2. 输出迭代器&#xff08;Output Iterator&#xff09; 3. 前向迭代器&#xff08;Forward Iterator&#xff09; 4. 双向迭代器&#xff08;Bidirectional Iterator&#xff09; 5. 随机访…...

8.1 Go 包的概念与使用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

第一篇【传奇开心果系列】AI工业应用经典算法和Python示例:基于AI的智能制造技术经典算法与Python实践

传奇开心果博文系列 系列博文目录AI工业应用经典算法和Python示例系列 博文目录前言一、AI在智能制造方面的应用场景介绍二、基于AI的智能制造技术经典算法介绍三、支持向量机机器学习算法Python示例代码四、随机森林机器学习算法Python示例代码五、深度学习算法Python示例代码…...

Mathtype插入编号的高级格式会重置之前的简单格式的问题

文章标题没说人话&#xff0c;大致意思是&#xff1a; 先以简单格式插入几个编号 再设置高级格式的编号时&#xff0c;即使没有选择插入编号&#xff0c;在点击下图的确定键时&#xff0c;会连带前面的简单公式一并更新 我在网上没有找到相关的问题&#xff0c;即使关闭了…...

弘君资本:存储芯片概念强势,西测测试三连板,佰维存储涨超10%

存储芯片概念3日盘中强势拉升&#xff0c;截至发稿&#xff0c;西测测验、万润科技涨停&#xff0c;佰维存储涨超10%&#xff0c;香农芯创涨近7%&#xff0c;航天智装、普冉股份等涨超5%。值得注意的是&#xff0c;西测测验已连续3个交易日涨停。 职业方面&#xff0c;当时干流…...

【机器学习】逻辑回归:原理、应用与实践

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 逻辑回归&#xff1a;原理、应用与实践引言1. 逻辑回归基础1.1 基本概念1.2 Sig…...

C++:list模拟实现

hello&#xff0c;各位小伙伴&#xff0c;本篇文章跟大家一起学习《C&#xff1a;list模拟实现》&#xff0c;感谢大家对我上一篇的支持&#xff0c;如有什么问题&#xff0c;还请多多指教 &#xff01; 如果本篇文章对你有帮助&#xff0c;还请各位点点赞&#xff01;&#xf…...

植物大战僵尸杂交版全平台 PC MAC 安卓手机下载安装详细图文教程

最近植物大战僵尸杂交版非常的火&#xff0c;好多小伙伴都想玩一玩&#xff0c;但作者只分享了 win 版&#xff0c;像手机还有MAC电脑都没有办法安装&#xff0c;身为 MAC 党当然不能放弃&#xff0c;经过一番折腾&#xff0c;也是成功在所有平台包括手机和MAC电脑都成功安装上…...

发送Http请求的两种方式

说明&#xff1a;在项目中&#xff0c;我们有时会需要调用第三方接口&#xff0c;获取调用结果&#xff0c;来实现自己的业务逻辑。调用第三方接口&#xff0c;通常是双方确定好&#xff0c;由对方开放一个接口&#xff0c;需要我们根据他们提供的接口文档&#xff0c;组装Http…...

【算法训练记录——Day23】

Day23——二叉树Ⅸ 669.修剪二叉搜索树108.将有序数组转换为二叉搜索树538.把二叉搜索树转换为累加树 今日内容&#xff1a; ● 669.修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树 ● 总结篇 669.修剪二叉搜索树 思路&#xff1a;主要是…...

【wiki知识库】04.SpringBoot后端实现电子书的增删改查以及前端界面的展示

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 目录 一、&#x1f525;今日内容 二、&#x1f30f;前端页面的改造 2.1新增电子书管理页面 2.2新增路由规则 2.3修改the-header代码 三、&#x1f697;SpringBoot后端Ebook模块改造 3.1增加电子书增/改接口 3.1.…...

NTLM Relay Gat:自动化NTLM中继安全检测工具

关于NTLM Relay Gat NTLM Relay Gat是一款功能强大的NTLM中继威胁检测工具&#xff0c;该工具旨在利用Impacket工具套件中的ntlmrelayx.py脚本在目标环境中实现NTLM中继攻击风险检测&#xff0c;以帮助研究人员确定目标环境是否能够抵御NTLM中继攻击。 功能介绍 1、多线程支持…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...