Flink系列一:flink光速入门 (^_^)
引入
spark和flink的区别:在上一个spark专栏中我们了解了spark对数据的处理方式,在 Spark 生态体系中,对于批处理和流处理采用了不同的技术框架,批处理由 Spark-core,SparkSQL 实现,流处理由 Spark Streaming 实现,但是Flink 可以用同一套代码同时实现批处理和流处理。
虽然spark和flink都可以进行批处理和流处理,但是侧重点不同,spark侧重于批处理,flink侧重于流处理。而且Spark Streaming准确来说并不是严格意义上的实时,它本质上还是一种微批处理的结构,用近实时描述更准确,所以使用Spark Streaming来做实时计算会发现延时很高。这也是会出现flink去代替Spark Streaming完成实时计算的原因之一。
一、离线和实时的区别
首先要明确一个概念,离线计算也叫做批量处理,实时计算也叫做流式处理,都是同一种东西,只是叫法不同。
1、离线(批处理)和实时(流处理)的区别:
批处理的特点是有界、大量,批处理非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。流处理的特点是无界、实时,流处理方式无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。
二、主流实时计算框架对比
声明式:描述所需的数据转换和输出,而框架负责如何实现这些转换。它更加关注于“做什么”,而不是“如何做”。
组合式:开通过编写具体的指令来控制数据的流动和处理。
三、Spark Streaming微批处理 与Flink流式处理对比

从上图我们就可以看出Spark Streaming处理的方式是每隔一段时间,将该段时间产生的所有数据集中起来一起处理,而Flink流式处理是将数据产生一条就处理一条,这也是flink实时处理延迟低的原因。
四、Apache Flink简介
1、概述
Apache Flink 是一个实时计算框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。
2、Flink特性

十大特性:

3、Apache Flink组件栈

4、Flink API 层级具体划分

---------------------------------------------------------------------------------------------------------------------------------简要的介绍到这里结束,下一篇文章开始正式的学习。下面写一个简单的入门案例配上图解,便于对flink的理解。
五、入门案例(WordCount)
1、单词统计案例1(流处理/实时)
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class Demo1StreamWordCount {public static void main(String[] args) throws Exception {//1、获取flink执行环境StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();//设置任务的并行度,一个并行度相当于一个taskenvironment.setParallelism(2);//设置数据从上游发送到下游的延迟时间,也可以不设置,默认延迟为200ms/*(1)一个正整数会根据该整数周期性地触发刷新(2)0在每条记录后触发刷新,从而最大限度地减少延迟(3)-1只在输出缓冲区已满时触发刷新,从而最大限度地提高吞吐量*/environment.setBufferTimeout(200);//2、读取数据//在命令行执行nc -lk 8888来模拟实时数据生成DataStream<String> wordDS = environment.socketTextStream("master", 8888);//3、统计单词数量DataStream<Tuple2<String, Integer>> wordKVDS = wordDS.map(word->Tuple2.of(word,1), Types.TUPLE(Types.STRING,Types.INT));//3、1分组统计单词的数量KeyedStream<Tuple2<String, Integer>, String> wordKeyBY = wordKVDS.keyBy(kv -> kv.f0);//3.2对下标为1的列求和DataStream<Tuple2<String, Integer>> wordCounts = wordKeyBY.sum(1);//打印数据wordCounts.print();//启动flinkenvironment.execute();}
}
运行结果:

代码流程图解:

2、单词统计案例2(批处理/离线)
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class Demo2BatchWorldCounr {public static void main(String[] args) throws Exception {//1、创建Flink运行环境StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();/**处理模式:* RuntimeExecutionMode.BATCH:批处理模式(MapReduce模型)* 1、输出最终结果* 2、批处理模式只能用于处理有界流** RuntimeExecutionMode.STREAMING:流处理模式(持续型模型)* 1、输出连续结果(换句话说就是会不断输出中间结果)* 2、流处理模式,有界流和无界流都可以处理*///设置处理模式,如果不设置,默认是流处理模式environment.setRuntimeMode(RuntimeExecutionMode.BATCH);//2、读取文件(有向流)DataStream<String> wordDs = environment.readTextFile("flink/data/words.txt");//3、统计单词数量DataStream<Tuple2<String, Integer>> kvDS = wordDs.map(word -> Tuple2.of(word, 1), Types.TUPLE(Types.STRING, Types.INT));//3.1分组统计单词数量KeyedStream<Tuple2<String, Integer>, String> keyBy = kvDS.keyBy(kv -> kv.f0);//3.2对下标为1的列求和DataStream<Tuple2<String, Integer>> wordCounts = keyBy.sum(1);//打印数据wordCounts.print();//启动flinkenvironment.execute();}
}
运行结果:

注意:在引入便提到过,上述两个案例用的都是同一套代码,flink能够使用同一套代码执行流处理和批处理,完成了流批统一(批流一体)。
相关文章:
Flink系列一:flink光速入门 (^_^)
引入 spark和flink的区别:在上一个spark专栏中我们了解了spark对数据的处理方式,在 Spark 生态体系中,对于批处理和流处理采用了不同的技术框架,批处理由 Spark-core,SparkSQL 实现,流处理由 Spark Streaming 实现&am…...
PySpark特征工程(III)--特征选择
有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 特征工程是数据分析…...
Mongodb的数据库简介、docker部署、操作语句以及java应用
Mongodb的数据库简介、docker部署、操作语句以及java应用 本文主要介绍了mongodb的基础概念和特点,以及基于docker的mongodb部署方法,最后介绍了mongodb的常用数据库操作语句(增删改查等)以及java下的常用语句。 一、基础概念 …...
七大战略性新兴产业崭露头角:新能源电燃灶或将成为未来厨房新宠
近日,在国家发布的七大战略性新兴产业名单中,新能源产业赫然在列,作为其中的重要组成部分,华火新能源电燃灶凭借其独特的优势,正逐渐走进人们的视野,有望成为未来厨房的新宠。 华火新能源电燃灶作为清洁能源…...
C#进阶-用于Excel处理的程序集
在.NET开发中,处理Excel文件是一项常见的任务,而有一些优秀的Excel处理包可以帮助开发人员轻松地进行Excel文件的读写、操作和生成。本文介绍了NPOI、EPPlus和Spire.XLS这三个常用的.NET Excel处理包,分别详细介绍了它们的特点、示例代码以及…...
持续总结中!2024年面试必问 20 道 Kafka面试题(五)
上一篇地址:持续总结中!2024年面试必问 20 道 Kafka面试题(四)-CSDN博客 九、请解释Kafka中的Zookeeper的作用。 在Kafka中,ZooKeeper扮演着至关重要的角色,主要负责集群管理、协调和状态同步等功能。以下…...
Draw.io 使用详细教程
Draw.io 是一款功能强大的在线绘图工具,适用于创建流程图、网络图、组织结构图、UML 图等。以下是详细的使用教程,包括基本操作、快捷键、常用技巧和进阶技巧。 1. 创建新图 选择存储位置 首次使用时,系统会询问你要将图保存到哪里。你可以…...
人工智能学习笔记(1):了解sklearn
sklearn 简介 Sklearn是一个基于Python语言的开源机器学习库。全称Scikit-Learn,是建立在诸如NumPy、SciPy和matplotlib等其他Python库之上,为用户提供了一系列高质量的机器学习算法,其典型特点有: 简单有效的工具进行预测数据分…...
PromptPort:为大模型定制的创意AI提示词工具库
PromptPort:为大模型定制的创意AI提示词工具库 随着人工智能技术的飞速发展,大模型在各行各业的应用越来越广泛。而在与大模型交互的过程中,如何提供精准、有效的提示词成为了关键。今天,就为大家介绍一款专为大模型定制的创意AI…...
IDEA升级web项目为maven项目乱码
今天将一个java web项目改造为maven项目。 首先,创建一个新的maven项目,将文件拷贝到新项目中。 其次,将旧项目的jar包,在maven的pom.xml做成依赖 接着,把没有maven坐标的jar包在编译的时候也包含进来 <build>…...
存内计算与扩散模型:下一代视觉AIGC能力提升的关键
目录 前言 视觉AIGC的ChatGPT4.0时代 扩散模型的算力“饥渴症” 存内计算解救算力“饥渴症” 结语 前言 在这个AI技术日新月异的时代,我们正见证着前所未有的创新与变革。尤其是在视觉内容生成领域(AIGC,Artificial Intelligence Generate…...
如何上传模型素材创建3D漫游作品?
一、进入3D空间漫游互动工具编辑器 进入720云官网-点击“开始创作”-选择3D空间漫游-进入到作品创建页面。 二、上传模型及素材,创建生成3D空间漫游模型 1.创建3D空间作品:您可以选择新建空白作品或使用720云提供的预设空间模板,本篇主要介绍…...
NFS p.1 服务器的部署以及客户端与服务端的远程挂载
目录 介绍 应用 NFS的工作原理 NFS的使用 步骤 1、两台机子 2、安装 3、配置文件 4、实验 服务端 准备 启动服务: 客户端 准备 步骤 介绍 NFS(Network File System,网络文件系统)是一种古老的用于在UNIX/Linux主…...
性能工具之 JMeter 常用组件介绍(二)
文章目录 一、Thread Group二、断言组件1、Response Assertion:响应断言2、Response Assertion:响应断言3、Duration Assertion:响应时间断言4.、JSON Assertion:json断言 一、Thread Group 线程组也叫用户组,是性能测…...
Bev 车道标注方案及复杂车道线解决
文章目录 1. 数据采集方案1.1 传感器方案1.2 数据同步2. 标注方案2.1 标注注意项2.2 4d 标注(时序)2.2.1 4d标签制作2.2.2 时序融合的作用2.2.2.1 时序融合方式2.2.2.2 时序融合难点2.2.2.2 时序实际应用情况3. 复杂车道线解决3.1 split 和merge车道线的解决3.2 大曲率或U形车道…...
vue 将echart 下载为base64图片
1 echart是页面的子组件, 2 页面有多个echart 3 将多个echart下载为base64图片 // 子组件 echart,要保存echartconst chart this.$echarts.init(this.$refs.chart, light) this.chartData chart; //保存数据,供父组件alarmReport调用(th…...
视频汇聚EasyCVR平台视图库GA/T 1400协议与GB/T 28181协议的区别
在公安和公共安全领域,视频图像信息的应用日益广泛,尤其是在监控、安防和应急指挥等方面。为了实现视频信息的有效传输、接收和处理,GA/T 1400和GB/T 28181这两个协议被广泛应用。虽然两者都服务于视频信息处理的目的,但它们在实际…...
白杨SEO:小红书标题怎么写?小红书怎么推广引流到微信?小红书违规注销不了怎么办?33个小红书运营常见问题解答【干货】
前言:这是白杨SEO公号原创第533篇。为什么想到写这个?因为很多白杨SEO朋友在做小红书遇到这样或那样的问题来问我,所以我把一些问得较多的常见热门问题整理写出来,有需要的可以随时查看,收藏与分享。图片在公众号白杨S…...
Linux压测
目录 CPU压测 内存压测 本文主要是编写了shell脚本,对Linux系统进行CPU和内存的压测。 CPU压测 [rootlocalhost ~]# cat cpu_stress_test.sh #!/bin/bash # 定义压测CPU的函数 function test_cpu() { # 初始化时间变量 local time # 获取参数 while geto…...
Linux如何远程连接服务器?
远程连接服务器是当代计算机技术中一个非常重要的功能,在各种领域都有广泛的应用。本文将重点介绍如何使用Linux系统进行远程连接服务器操作。 SSH协议 远程连接服务器最常用的方式是使用SSH(Secure Shell)协议。SSH是一种网络协议ÿ…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
