如何实现单例模式及不同实现方法分析-设计模式
这是 一道面试常考题:(经常会在面试中让手写一下)
什么是单例模式
【问什么是单例模式时,不要答非所问,给出单例模式有两种类型之类的回答,要围绕单例模式的定义去展开。】
单例模式是指在内存中只会创建且仅创建一次对象的设计模式。在程序中多次使用同一个对象且作用相同时,为了防止频繁地创建对象使得内存飙升,单例模式可以让程序仅在内存中创建一个对象,让所有需要调用的地方都共享这一单例对象。
单例模式(Singleton Pattern)是一种常用的设计模式,保证一个类在内存中只有一个实例,并提供一个全局访问点。单例模式通常用于管理共享资源、控制全局状态或提供全局服务。

单例模式有两种类型:
- 懒汉式:在真正需要使用对象时才去创建该单例类对象
- 饿汉式:在类加载时已经创建好该单例对象,等待被程序使用
单例模式实现方法:
一、饿汉式单例:在类初始化时就已经自行实例化了
public class Singleton {//私有静态成员变量private static Singleton instance = new Singleton();//私有构造方法private Singleton(){}//公有静态访问方法public static Singleton getInstance(){return instance;}}
注意上面的代码在第2行已经实例化好了一个Singleton对象在内存中,不会有多个Singleton对象实例存在;类在加载时会在堆内存中创建一个Singleton对象,当类被卸载时,Singleton对象也随之消亡了。
当然可以改为静态方块来执行实例化语句:
private static Singleton instance = null;
static{
instance = new Singleton();
}
二、懒汉式单例:在第一次调用实例的时候才实例化
如果两个线程同时判断singleton为空,那么它们都会去实例化一个Singleton对象,这就变成双例了,就不是单例了,所以可以在方法上加锁或类 对象上 加锁,
public class Singleton {//私有静态成员变量private static Singleton instance;//私有构造方法private Singleton(){}//公有静态访问方法,在方法上加了一个synchronized关键字确保线程安全public static synchronized Singleton getInstance(){if(instance == null)instance = new Singleton();return instance;}}// 或者(在类对象上加锁) public static Singleton getInstance() {synchronized(Singleton.class) { if (singleton == null) {singleton = new Singleton();}}return singleton;}
这样就规避了两个线程同时创建Singleton对象的风险,但是引来另外一个问题:每次去获取对象都需要先获取锁,并发性能非常地差,极端情况下,可能会出现卡顿现象。
接下来要做的就是优化性能,目标是:如果没有实例化对象则加锁创建,如果已经实例化了,则不需要加锁,直接获取实例
所以直接在方法上加锁的方式就被废掉了,因为这种方式无论如何都需要先获取锁
接下来有下面的DCL
三、双重检测锁模式的懒汉式单例:(线程安全效率高)
又叫DCL懒汉式 (Double Check Lock)
public class Singleton {//私有静态成员变量,加上了volatile关键字确保可见性private volatile static Singleton instance = null;//私有构造方法private Singleton(){}//公有静态访问方法public static Singleton getInstance(){if(instance == null){ //线程A和线程B同时看到singleton = null,如果不为null,则直接返回singletonsynchronized (Singleton.class){ //线程A或线程B获得该锁进行初始化;获取锁这里利用到volatile关键字的可见性,再次判断空if(instance == null) //其中一个线程进入该分支,另外一个线程则不会进入该分支,此时instance真的为空,才去创建实例instance = new Singleton();}}return instance;}}

注意:synchronized 解决并发问题,但是因为lazyMan = new LazyMan();不是原子性操作(可以分割,见代码注释),可能发生指令重排序的问题,通过volatil来解决
- Java 语言提供了 volatile和 synchronized 两个关键字来保证线程之间操作的有序性,volatile 是因为其本身包含“禁止指令重排序”的语义,synchronized 是由“一个变量在同一个时刻只允许一条线程对其进行 lock 操作”这条规则获得的,此规则决定了持有同一个对象锁的两个同步块只能串行执行。
- 原子性就是指该操作是不可再分的。不论是多核还是单核,具有原子性的量,同一时刻只能有一个线程来对它进行操作。简而言之,在整个操作过程中不会被线程调度器中断的操作,都可认为是原子性。比如 a = 1;
指令重排序是指:JVM在保证最终结果正确的情况下,可以不按照程序编码的顺序执行语句,尽可能提高程序的性能
- 使用volatile关键字可以防止指令重排序,其原理较为复杂,这篇博客不打算展开,可以这样理解:使用volatile关键字修饰的变量,可以保证其指令执行的顺序与程序指明的顺序一致,不会发生顺序变换,这样在多线程环境下就不会发生NPE异常了。
- volatile还有第二个作用:使用volatile关键字修饰的变量,可以保证其内存可见性,即每一时刻线程读取到该变量的值都是内存中最新的那个值,线程每次操作该变量都需要先读取该变量。
四、破坏懒汉式单例与饿汉式单例
无论是完美的懒汉式还是饿汉式,终究敌不过反射和序列化,它们俩都可以把单例对象破坏掉(产生多个对象)。
1.演示利用反射破坏单例模式
public static void main(String[] args) {// 获取类的显式构造器Constructor<Singleton> construct = Singleton.class.getDeclaredConstructor();// 可访问私有构造器construct.setAccessible(true); // 利用反射构造新对象Singleton obj1 = construct.newInstance(); // 通过正常方式获取单例对象Singleton obj2 = Singleton.getInstance(); System.out.println(obj1 == obj2); // false
}
上述的代码一针见血了:利用反射,强制访问类的私有构造器,去创建另一个对象
2.利用序列化与反序列化破坏单例模式
public static void main(String[] args) {// 创建输出流ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("Singleton.file"));// 将单例对象写到文件中oos.writeObject(Singleton.getInstance());// 从文件中读取单例对象File file = new File("Singleton.file");ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file));Singleton newInstance = (Singleton) ois.readObject();// 判断是否是同一个对象System.out.println(newInstance == Singleton.getInstance()); // false
}
两个对象地址不相等的原因是:readObject() 方法读入对象时,它必定会返回一个新的对象实例,必然指向新的内存地址。
五、枚举实现
至此我们已经掌握了懒汉式与饿汉式的常见写法了,在《大话设计模式》中的单例模式章节也止步于此。但是,追求极致的我们,怎么能够止步于此,在《Effective Java》书中,给出了终极解决方法,话不多说,学完下面,真的不虚面试官考你了。
在 JDK1.5 后,使用 Java 语言实现单例模式的方式又多了一种:枚举
我们先来看看枚举如何实现单例模式的,如下代码:
public enum Singleton {INSTANCE;public void doSomething() {System.out.println("这是枚举类型的单例模式!");}
}
需要思考:使用枚举实现单例模式的优势在哪里?
我们从最直观的地方入手,第一眼看到这几行代码,就会感觉到“少”,没错,就是少,虽然这优势有些牵强,但写的代码越少,越不容易出错。
优势1:代码对比饿汉式与懒汉式来说,更加地简洁
其次,既然是实现单例模式,那这种写法必定满足单例模式的要求,而且使用枚举实现时,没有做任何额外的处理。
优势2:它不需要做任何额外的操作去保证对象单一性与线程安全性
我写了一段测试代码放在下面,这一段代码可以证明程序启动时仅会创建一个 Singleton 对象,且是线程安全的。
我们可以简单地理解枚举实现单例的过程:在程序启动时,会调用Singleton的空参构造器,实例化好一个Singleton对象赋给INSTANCE,之后再也不会实例化
public enum Singleton {INSTANCE;Singleton() { System.out.println("枚举创建对象了"); }public static void main(String[] args) { /* test(); */ }public void test() {Singleton t1 = Singleton.INSTANCE;Singleton t2 = Singleton.INSTANCE;System.out.print("t1和t2的地址是否相同:" + t1 == t2);}
}
// 枚举创建对象了
// t1和t2的地址是否相同:true
除了优势1和优势2,还有最后一个优势让枚举实现单例模式在目前看来已经是“无懈可击”了。
优势3:使用枚举可以防止调用者使用反射、序列化与反序列化机制强制生成多个单例对象,破坏单例模式。
防破坏的原理如下:
(1)防反射

枚举类默认继承了 Enum 类,在利用反射调用 newInstance() 时,会判断该类是否是一个枚举类,如果是,则抛出异常。
(2)防止反序列化创建多个枚举对象
在读入Singleton对象时,每个枚举类型和枚举名字都是唯一的,所以在序列化时,仅仅只是对枚举的类型和变量名输出到文件中,在读入文件反序列化成对象时,利用 Enum 类的 valueOf(String name) 方法根据变量的名字查找对应的枚举对象。
所以,在序列化和反序列化的过程中,只是写出和读入了枚举类型和名字,没有任何关于对象的操作。
小总结:
(1)Enum 类内部使用Enum 类型判定防止通过反射创建多个对象
(2)Enum 类通过写出(读入)对象类型和枚举名字将对象序列化(反序列化),通过 valueOf() 方法匹配枚举名找到内存中的唯一的对象实例,防止通过反序列化构造多个对象
(3)枚举类不需要关注线程安全、破坏单例和性能问题,因为其创建对象的时机与饿汉式单例有异曲同工之妙。
总结:
(1)单例模式常见的写法有两种:懒汉式、饿汉式
(2)饿汉式:在类加载时已经创建好该单例对象,在获取单例对象时直接返回对象即可,不会存在并发安全和性能问题。
(3)懒汉式:在需要用到对象时才实例化对象,正确的实现方式是:Double Check + Lock,解决了并发安全和性能低下问题
(4)在开发中如果对内存要求非常高,那么使用懒汉式写法,可以在特定时候才创建该对象;
(5)如果对内存要求不高使用饿汉式写法,因为简单不易出错,且没有任何并发安全和性能问题
(6)为了防止多线程环境下,因为指令重排序导致变量报NPE,需要在单例对象上添加volatile关键字防止指令重排序
(7)最优雅的实现方式是使用枚举,其代码精简,没有线程安全问题,且 Enum 类内部防止反射和反序列化时破坏单例。
相关文章:
如何实现单例模式及不同实现方法分析-设计模式
这是 一道面试常考题:(经常会在面试中让手写一下) 什么是单例模式 【问什么是单例模式时,不要答非所问,给出单例模式有两种类型之类的回答,要围绕单例模式的定义去展开。】 单例模式是指在内存中只会创建…...
wampserver安装与汉化
wampserver安装与汉化 文章目录 wampserver安装与汉化一、安装二、汉化1.升级软件并安装补丁 介绍: WampServer是一款由法国人开发的Apache Web服务器、PHP解释器以及MySQL数据库的整合软件包。免去了开发人员将时间花费在繁琐的配置环境过程,从而腾出更…...
解决MyBatis的N+1问题
解决MyBatis的N1问题 N1问题通常出现在一对多关联查询中。当我们查询主表数据(如订单)并希望获取关联的从表数据(如订单的商品)时,如果每获取一条主表记录都要执行一次从表查询,就会产生N1次查询的问题。假…...
12-学生们参加各科测试的次数(高频 SQL 50 题基础版)
12-学生们参加各科测试的次数 -- 学生表中,id是唯一的,将他作为主表 -- CROSS JOIN产生了一个结果集,该结果集是两个关联表的行的乘积 -- 2行表,与3行表使用cross join,得到2*36行数据 select st.student_id, st.student_name,su.subject_na…...
2024网络与信息安全管理员职工职业技能竞赛re0220164094
main部分,就是要逆这部分shellcode,程序把data段里面的东西复制到bss段去执行,期间包含解码操作。 v19 0;puts("Please input your flag: ");__isoc99_scanf("%s", s);if ( strlen(s) ! 38 ){puts("Wrong length!&…...
Elasticsearch--easy-ES框架使用,轻松操作查询Elasticsearch,简化开发
Easy-Es(简称EE)是一款基于ElasticSearch(简称Es)官方提供的RestHighLevelClient打造的ORM开发框架,在 RestHighLevelClient 的基础上,只做增强不做改变,为简化开发、提高效率而生,您如果有用过Mybatis-Plus(简称MP),那么您基本可…...
【教程】如何实现WordPress网站降级(用于解决插件和主题问题)
在最新可用版本上运行WordPress安装、插件和主题是使用该平台的关键最佳实践。还建议使用最新版本的PHP。但是,在某些情况下,这是不谨慎或不可能的。 如果您发现自己处于这种情况,您可能需要撤消更新并降级您的WordPress网站(或其中的一部分)。幸运的是,有一些方法可用于…...
思维导图-vb.net开发带进度条的复制文件夹功能c#复制文件夹
你们谁写代码会用流程图来做计划,或者写项目总结报告? .net带进度条复制文件夹 方案 列出所有子文件夹,再创建,复制文件 大文件可以单独做进度条 缺点:设计会更复杂 直接…...
Linux文本处理三剑客之awk命令
官方文档:https://www.gnu.org/software/gawk/manual/gawk.html 什么是awk? Awk是一种文本处理工具,它的名字是由其三位创始人(Aho、Weinberger和Kernighan)的姓氏首字母组成的。Awk的设计初衷是用于处理结构化文本数…...
公差和配合
配合的选择: 配合特性以及基本偏差的应用: 常用优先配合特性及选用举例 为什么一般情况下选用基孔制而不用基轴制: 优先采用基孔制的原因主要包括工艺性、经济性和标准化: 工艺性。加工孔比加工轴更难,因为孔…...
AI大模型应用开发实践:5.快速入门 Assistants API
快速入门 Assistants API Assistants API 允许您在自己的应用程序中构建人工智能助手。一个助手有其指令,并可以利用模型、工具和知识来回应用户查询。 Assistants API 目前支持三种类型的工具: 代码解释器 Code Interpreter检索 Retrieval函数调用 Function calling使用 P…...
stack和queue的模拟实现
文章目录 如何实现?实现stack实现queue总结 如何实现? 首先我们看看官网上的stack,官网上的stack是用deque作为模版的缺省值去实现的,deque是什么? deque其实就是双端队列,双端队列,顾名思义&am…...
你的手机是如何控制你的手表之广播篇
前言 要让手机能够控制手表,第一步当然要让手机能够“看见”手表,人类作为上帝视角,我们是能够通过眼睛直接看见手机和手表的,但要让手机“看见”手表,就需要一端把自己的信息通过电磁波的形式发往空中,另…...
深入理解并发之LongAdder、DoubleAdder的实现原理
深入理解LongAdder、DoubleAdder的实现原理 本文主要通过LongAdder和DoubleAdder的源码,讲述一下其实现原理。通过LongAdder和DoubleAdder的源码可知。两者都是继承了Striped64的类。下面我们将通过源码的形式讲述一下这三个类都做了哪些事情。 1: Striped64 …...
virtuoso原理图无法编辑
(SCH-1217): Could not open "XX schematic" for edit. (because it is locked by user XX on XX) Would you like to open it for read? 解决方法: 到工程目录的schematic文件夹下找到sch.oa.cdslck.RHEL30.XXX-eda.21423和sch.oa.cdslck全部删掉即可正…...
Kotlin协程中的作用域 `GlobalScope`、`lifecycleScope` 和 `viewModelScope`
Kotlin协程中的作用域 Kotlin协程提供了多种作用域来管理协程的生命周期,其中最常见的是 GlobalScope、lifecycleScope 和 viewModelScope。 1. GlobalScope GlobalScope 是一个全局作用域,不受任何其他生命周期的限制。这意味着在 GlobalScope 中启动…...
leetcode739 每日温度
题目 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。 示例 输入: tempe…...
【软件测试】自动化测试如何管理测试数据
前言 在之前的自动化测试框架相关文章中,无论是接口自动化还是UI自动化,都谈及data模块和config模块,也就是测试数据和配置文件。 随着自动化用例的不断增加,需要维护的测试数据也会越来越多,维护成本越来越高&#…...
Llama 3-V: 比GPT4-V小100倍的SOTA
大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调重新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模…...
Anaconda安装配置
Anaconda下载: 网盘下载:https://pan.quark.cn/s/c5663477ccef 配置环境变量: 以管理员身份运行命令提示符 setx /M PATH "%PATH%;C:\ProgramData\anaconda3;C:\ProgramData\anaconda3\Scripts;C:\ProgramData\anaconda3\Library\bi…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
