数据结构与算法之Floyd弗洛伊德算法求最短路径
目录
前言
Floyd弗洛伊德算法
定义
步骤
一、初始化
二、添加中间点
三、迭代
四、得出结果
时间复杂度
代码实现
结束语
前言
今天是坚持写博客的第18天,希望可以继续坚持在写博客的路上走下去。我们今天来看看数据结构与算法当中的弗洛伊德算法。
Floyd弗洛伊德算法
定义
Floyd弗洛伊德算法是一种用于在加权图中找到所有顶点对之间的最短路径的算法。这个算法可以处理带有正权、负权甚至零权(但不存在负权环路)的图。
对于了解Floyd弗洛伊德算法,我们需要先了解几个前置概念:
- 加权图:图中的每条边都有一个与之关联的权值
- 最短路径:从一个顶点到另一个顶点的总权值最小的路径
- 负权环路:一个环路(即一条起点和终点相同的路径),其所有边的权值之和为负。如果存在负权环路,则最短路径问题可能没有解,因为可以通过无限次地遍历这个环路来不断减小路径的总权值。
步骤
假设我们有如下的图:
其中A到B的权值为2,A到C的权值为6,A到D的权值为5,B到C的权值为1,B到D的权值为4,C到D的权值为3。我们可以先得出他的邻接矩阵:
为什么对角线上的值都是零?因为对角线上的路径都是一个环路,图上没有自己指向自己的环路,因此都是0。
下面进入正题,如何使用弗洛伊德算法呢?
一、初始化
首先,为图中所有顶点对(i, j)之间设置一个距离矩阵D,其中D[i][j]表示从顶点i到顶点j的当前已知最短距离。如果两个顶点之间没有直接相连的边,则设置D[i][j]为一个很大的数(通常是一个无穷大的值,表示为∞)。如果两个顶点之间有直接相连的边,则设置D[i][j]为该边的权值。另外,设置一个中间矩阵P,用于记录最短路径的信息。
二、添加中间点
- 对于图中的每一个顶点k(作为中间点),遍历所有顶点对(i, j)(其中i和j是图中的顶点且i ≠ j,i ≠ k,j ≠ k)。
- 如果从i到k再到j的路径比已知的i到j的路径更短(即dist[i][k] + dist[k][j] < dist[i][j]),则更新dist[i][j]为dist[i][k] + dist[k][j]。
三、迭代
重复步骤二,对于图中的每一个顶点k
都执行一次。由于图中总共有n
个顶点,因此这个步骤需要执行n
次迭代。
四、得出结果
在完成所有迭代后,dist矩阵将包含图中所有顶点对之间的最短路径长度。如果dist[i][j]的值仍然是无穷大,则表示从顶点i到顶点j没有路径。
时间复杂度
Floyd算法的时间复杂度为O(n^3),其中n是图中顶点的数量。这是因为算法需要进行n次迭代,每次迭代都需要检查所有n^2个顶点对。
代码实现
下面是大家期待的代码实现,今天我们用python实现
import numpy as np def floyd_warshall(graph): n = len(graph) # 复制邻接矩阵作为距离矩阵 dist = np.copy(graph) # 遍历所有顶点作为中间点 for k in range(n): # 遍历所有顶点对 (i, j) for i in range(n): for j in range(n): # 如果通过顶点 k 可以找到更短的路径 if dist[i][k] + dist[k][j] < dist[i][j]: dist[i][j] = dist[i][k] + dist[k][j] return dist # 示例图(邻接矩阵)
graph = np.array([ [0, 5, float('inf'), 10], [float('inf'), 0, 3, float('inf')], [float('inf'), float('inf'), 0, 1], [float('inf'), float('inf'), float('inf'), 0]
]) # 调用 Floyd-Warshall 算法
distances = floyd_warshall(graph) # 打印结果
print("Shortest distances between all pairs of vertices:")
print(distances)
结束语
以上就是今天对弗洛伊德算法求解最短路径的解释,希望对大家有所帮助,如果对您有帮助,希望您可以留下一个点赞、关注和收藏,这对我很重要,谢谢!
相关文章:

数据结构与算法之Floyd弗洛伊德算法求最短路径
目录 前言 Floyd弗洛伊德算法 定义 步骤 一、初始化 二、添加中间点 三、迭代 四、得出结果 时间复杂度 代码实现 结束语 前言 今天是坚持写博客的第18天,希望可以继续坚持在写博客的路上走下去。我们今天来看看数据结构与算法当中的弗洛伊德算法。 Flo…...
Ubuntu系统设置Redis与MySQL登录密码
Ubuntu系统设置Redis与MySQL登录密码 在Ubuntu 20.04系统中配置Redis和MySQL的密码,您需要分别对两个服务进行配置。以下是详细步骤: 配置Redis密码 打开Redis配置文件: Redis的配置文件通常位于/etc/redis/redis.conf。 sudo nano /etc/redis/redis.c…...
数据库连接池的概念和原理
目录 一、什么是数据库连接池 二、数据库连接池的工作原理 1.初始化阶段: 2.获取连接: 3.使用连接: 4.管理和优化: 三、数据库连接池的好处 一、什么是数据库连接池 数据库连接池(Database Connection Pooling&…...
国内常用的编程博客网址:技术资源与学习平台
一、国内常用的编程博客网址:技术资源与学习平台 大家初入编程,肯定会遇到各种各样的问题。我们除了找 AI 工具以外,我们还能怎么迅速解决问题呢? 大家可以通过谷歌,百度,必应,github…...

怎么给三极管基极或者MOS管栅极接下拉电阻
文章是瑞生网转载,PDF格式文章下载: 怎么给三极管基极或者MOS管栅极接下拉电阻.pdf: https://url83.ctfile.com/f/45573183-1247189078-52e27b?p7526 (访问密码: 7526)...

Java Web学习笔记5——基础标签和样式
<!DOCTYPE html> html有很多版本,那我们应该告诉用户和浏览器我们现在使用的是HMTL哪个版本。 声明为HTML5文档。 字符集: UTF-8:现在最常用的字符编码方式。 GB2312:简体中文 BIG5:繁体中文、港澳台等方式…...

01_深度学习基础知识
1. 感知机 感知机通常情况下指单层的人工神经网络,其结构与 MP 模型类似(按照生物神经元的结构和工作原理造出来的一个抽象和简化了模型,也称为神经网络的一个处理单元) 假设由一个 n 维的单层感知机,则: x 1 x_1 x1 至 x n x_n xn 为 n 维输入向量的各个分量w 1 j…...
60、最大公约数
最大公约数 题目描述 给定n对正整数ai,bi,请你求出每对数的最大公约数。 输入格式 第一行包含整数n。 接下来n行,每行包含一个整数对ai,bi。 输出格式 输出共n行,每行输出一个整数对的最大公约数。 数据范围 1 ≤ n ≤ 1 0 5 , 1≤n≤…...

设计模式在芯片验证中的应用——迭代器
一、迭代器设计模式 迭代器设计模式(iterator)是一种行为设计模式, 让你能在不暴露集合底层表现形式 (列表、 栈和树等数据结构) 的情况下遍历集合中所有的元素。 在验证环境中的checker会收集各个monitor上送过来的transactions࿰…...

imx6ull - 制作烧录SD卡
1、参考NXP官方的手册《i.MX_Linux_Users_Guide.pdf》的这一章节: 1、SD卡分区 提示:我们常用的SD卡一个扇区的大小是512字节。 先说一下i.MX6ULL使用SD卡启动时的分区情况,NXP官方给的镜像布局结构如下所示: 可以看到,…...
使用chatgpt api快速分析pdf
需求背景 搞材料的兄弟经常要分析pdf,然后看到国外有产品是专门调用chatpdf来分析pdf的,所以就来问我能不能帮他也做一个出来。正好我有chatgpt的api,所以就研究了一下这玩意怎么弄。 需求分析 由于chatgpt是按字符算钱的,所以…...
Vue:状态管理pinia
安装 npm install pinia在 main.js 中注册 // main.jsimport { createApp } from vue import { createPinia } from "pinia"; import App from ./app.vueconst app createApp(App) const pinia createPinia(); app.use(pinia).mount(#app)创建 store // stores/…...

【Android Studio】导入import android.support.v7.app.AppcompatActivity;时报错
一、问题描述 在进行安卓项目开发时使用import android.support.v7.app.AppcompatActivity;报错: 运行后会有乱码出现: 二、解决办法 将import android.support.v7.app.AppcompatActivity;改为import androidx.appcompat.app.AppCompatActivity;基本上…...
汽车区域控制器技术分析
汽车区域控制器的起源与发展 随着汽车技术的不断发展,汽车电子电气架构也在经历着深刻的变革。汽车区域控制器作为一种新兴的技术,正逐渐成为汽车电子电气架构的重要组成部分。 在早期,汽车电子电气架构主要采用分布式架构。这种架构下,各个电子控制单元(ECU)分别负责不…...
myEclipse新手使用教程
myEclipse新手使用教程 一、引言 myEclipse是一款流行的Java集成开发环境(IDE),它集成了众多的开发工具,为Java开发者提供了一个强大的开发平台。本文将详细介绍如何下载、安装和配置myEclipse,以及如何创建一个简单…...
【WPF编程宝典】第6讲:资源
研究了 WPF 资源系统使得在应用不同部分可以重用相同对象的原理,介绍了如何在代 码和标记中声明资源,如何提取系统资源,以及如何使用类库程序集在应用程序之间共享资源。 1.资源基础 1.1静态资源和动态资源 区别:静态资源只从资…...

容器化部署Pig微服务快速开发框架
系统说明 基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台, 同时支持微服务架构和单体架构 提供对 Spring Authorization Server 生产级实践,支持多种安全授权模式 提供对常见容器化方案支持 Kubernetes、Rancher2 、Kubesphere、E…...

Windows编程:图标资源、光标资源、字符串资源、加速键资源、WM_PAINT消息、绘图
承接前文: win32窗口编程windows 开发基础win32-注册窗口类、创建窗口win32-显示窗口、消息循环、消息队列win32-鼠标消息、键盘消息、计时器消息、菜单资源 本文目录 图标资源光标资源WM_SETCURSOR 消息 字符串资源加速键资源WM_PAINT 消息绘图绘图编程绘图基础基…...
【2024 短剧0元轻资产创业风口】做自己的老板,做新媒体的领路人
好省短剧邀请码2Urux1ZoQm(长按复制粘贴即可)大多数好省短剧推广活动都会通过官方渠道发布邀请码。您可以通过关注官方社交媒体账号、订阅电子邮件通知或参与官方网站上的活动,获得邀请码的机会。官方渠道通常会提前公布邀请码的获取方式和条件,您只需按照要求执行即可。好省…...
Docker安装Bitbucket
centos7版本 [rootlocalhost ~]# cat /etc/os-release NAME"CentOS Linux" VERSION"7 (Core)" ID"centos" ID_LIKE"rhel fedora" VERSION_ID"7" PRETTY_NAME"CentOS Linux 7 (Core)" ANSI_COLOR"0;31"…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...

高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...