【深度学习】安全帽检测,目标检测,Faster RCNN训练
文章目录
- 资料
- 环境
- 尝试训练
- 安全帽数据训练
- 测试
- 预测
- 全部数据、代码、训练完的权重等资料见:
资料
依据这个进行训练:
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn
├── backbone: 特征提取网络,可以根据自己的要求选择
├── network_files: Faster R-CNN网络(包括Fast R-CNN以及RPN等模块)
├── train_utils: 训练验证相关模块(包括cocotools)
├── my_dataset.py: 自定义dataset用于读取VOC数据集
├── train_mobilenet.py: 以MobileNetV2做为backbone进行训练
├── train_resnet50_fpn.py: 以resnet50+FPN做为backbone进行训练
├── train_multi_GPU.py: 针对使用多GPU的用户使用
├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试
├── validation.py: 利用训练好的权重验证/测试数据的COCO指标,并生成record_mAP.txt文件
└── pascal_voc_classes.json: pascal_voc标签文件

环境
dockerfile:
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive# 安装基本软件包
RUN apt-get update && \apt-get upgrade -y && \apt-get -y --no-install-recommends install vim wget curl build-essential python3.10-dev python3.10 python3-pip sudo && \update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1 && \apt-get install -y libgl1 libglib2.0-0 ffmpeg tzdata && \ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \echo "Asia/Shanghai" > /etc/timezoneRUN apt-get -y --no-install-recommends install vim wget curl git build-essential python3.10 python3-pip python3.10-venv sudoRUN apt-get install -y libgl1 libglib2.0-0 iputils-ping python3.10-dev libgoogle-perftools-dev nginx# 更改默认Shell为bash
SHELL ["/bin/bash", "-c"]
python 环境:
git clone https://github.com/WZMIAOMIAO/deep-learning-for-image-processing.git
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
conda create -n py38 python=3.8 -y
conda activate py38
# CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch -y
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn
pip install -r requirements.txt
得到readme.md说的一些权重:
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/backbonewget https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
--2024-06-05 13:50:21-- https://download.pytorch.org/models/mobilenet_v2-b0353104.pthmv mobilenet_v2-b0353104.pth mobilenet_v2.pthwget https://download.pytorch.org/models/resnet50-0676ba61.pth
--2024-06-05 13:50:46-- https://download.pytorch.org/models/resnet50-0676ba61.pthmv resnet50-0676ba61.pth resnet50.pthwget https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pthmv fasterrcnn_resnet50_fpn_coco-258fb6c6.pth fasterrcnn_resnet50_fpn_coco.pthmkdir /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/data
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/datawget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
尝试训练
反向commit 镜像:
docker commit 74d9893ccb29 kevinchina/deeplearning:fasterrcnn_train_v1docker push kevinchina/deeplearning:fasterrcnn_train_v1
重启容器:
docker run --gpus all -it -v $PWD:/wkp --shm-size=64g kevinchina/deeplearning:fasterrcnn_train_v1 bash
训练:
conda activate py38
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/
python train_mobilenetv2.py
启动成功:

一轮训练完成后的验证:

安全帽数据训练
安全帽佩戴检测
数据集:https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
加入安全帽数据,小小修改一下源代码的一些小的东西:




启动训练:
python train_mobilenetv2.py
训练完一轮:

训练结束:
Test: Total time: 0:00:52 (0.0858 s / it)
Averaged stats: model_time: 0.0590 (0.0440) evaluator_time: 0.2436 (0.0344)
Accumulating evaluation results...
DONE (t=1.42s).
IoU metric: bboxAverage Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.412Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.695Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.425Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.171Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.540Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.669Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.169Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.395Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.262Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.602Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.714
successful save loss curve!
successful save mAP curve!
测试
用test.txt中测试准确率
python validation.py

预测
(py38) root:/deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn# python predict.py
using cuda:0 device.
inference+NMS time: 0.018668174743652344
docker push kevinchina/deeplearning:fasterrcnn_train_v2
全部数据、代码、训练完的权重等资料见:
https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2
相关文章:
【深度学习】安全帽检测,目标检测,Faster RCNN训练
文章目录 资料环境尝试训练安全帽数据训练测试预测全部数据、代码、训练完的权重等资料见: 资料 依据这个进行训练: https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn ├── bac…...
IDEA2024创建maven项目
1、new->project 2、创建后展示 3、生成resources文件夹 4、测试--编写一个hello文件...
linux上VirtualBox使用
前言 最近想把唯一的windows系统装成linux, 但是确实存在一些特殊软件无法舍弃,所有装完linux需要用虚拟机装个windows 上来使用特定的一些软件(不想用wine了)。 还有对一些特定usb设备的透传,这样才能保证在虚拟机中…...
PID控制算法介绍及使用举例
PID 控制算法是一种常用的反馈控制算法,用于控制系统的稳定性和精度。PID 分别代表比例(Proportional)、积分(Integral)和微分(Derivative),通过组合这三个部分来调节控制输出&#…...
因子区间[牛客周赛44]
思路分析: 我们可以发现125是因子个数的极限了,所以我们可以用二维数组来维护第几个数有几个因子,然后用前缀和算出来每个区间合法个数,通过一个排列和从num里面选2个 ,c num 2 来计算即可 #include<iostream> #include<cstring> #include<string> #include…...
代码随想录算法训练营第四十四天 | 01背包问题理论基础、01背包问题滚动数组、416. 分割等和子集
背包问题其实有很多种,01背包是最基础也是最经典的,软工计科学生一定要掌握的。 01背包问题 代码随想录 视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经…...
【PingPong_注册安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …...
车辆路径规划之Dubins曲线与RS曲线简述
描述 Dubins和RS曲线都是路径规划的经典算法,其中车辆运动学利用RS曲线居多,因此简单介绍Dubins并引出RS曲线。 花了点时间看了二者的论文,并阅读了一个开源的代码。 Dubins曲线 Dubins曲线是在满足曲率约束和规定的始端和末端的切线&#…...
PostgreSQL 和Oracle锁机制对比
PostgreSQL 和Oracle锁机制对比 PostgreSQL 和 Oracle 都是业界广泛使用的关系型数据库管理系统,它们在锁机制方面都有独到的设计来控制并发访问,确保数据的一致性和完整性。下面我们详细比较一下这两个数据库系统的锁机制。 1. 锁类型 PostgreSQL P…...
6月05日,每日信息差
第一、特斯拉在碳博会上展示了其全品类的可持续能源解决方案,包括首次在国内展出的超大型电化学商用储能系统 Megapack 和家庭储能系统 Powerwall。此外,特斯拉还展示了电动汽车三电系统的解构和电池回收技术产品 第二、2024 年第一季度,全球…...
MongoDB~俩大特点管道聚合和数据压缩(snappy)
场景 在MySQL中,通常会涉及多个表的一些操作,MongoDB也类似,有时需要将多个文档甚至是多个集合汇总到一起计算分析(比如求和、取最大值)并返回计算后的结果,这个过程被称为 聚合操作 。 根据官方文档介绍&…...
HTML+CSS+JS 动态登录表单
效果演示 实现了一个登录表单的背景动画效果,包括一个渐变背景、一个输入框和一个登录按钮。背景动画由多个不同大小和颜色的正方形组成,它们在页面上以不同的速度和方向移动。当用户成功登录后,标题会向上移动,表单会消失。 Code <!DOCTYPE html> <html lang=&q…...
统一返回响应
前言 我们为什么要设置统一返回响应 提高代码的可维护性:通过统一返回请求的格式,可以使代码更加清晰和易于维护,减少重复的代码,提高代码质量。 便于调试和测试:统一的返回格式使得在调试和测试时更为简单ÿ…...
大数据学习问题记录
问题记录 node1突然无法连接finalshell node1突然无法连接finalshell 今天我打开虚拟机和finalshell的时候,发现我的node1连接不上finalshell,但是node2、node3依旧可以链接,我在网上找了很多方法,但是是关于全部虚拟机连接不上finalshell&a…...
第N4周:中文文本分类
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 一、预备知识 中文文本分类和英文文本分类都是文本分类,为什么要单独拎出来个中文文本分类呢? 在自然语言处理(NLP&#x…...
【kubernetes】探索k8s集群的pod控制器详解(Deployment、StatefulSet、DaemonSet、Job、CronJob)
目录 一、Pod控制器及其功用 二、pod控制器有多种类型 2.1ReplicaSet 2.1.1ReplicaSet主要三个组件组成 2.2Deployment 2.3DaemonSet 2.4StatefulSet 2.5Job 2.6Cronjob 三、Pod与控制器之间的关系 3.1Deployment 3.2SatefulSet 3.2.1StatefulSet三个组件 3.2.2为…...
直接插入排序
#include <stdio.h>void insert_sort(int arr[], int n) {int i;int j;int tmp;for (i 1; i < n; i){tmp arr[i];j i - 1;// 将要插入的元素与数组中的元素比较(从后向前比) while (j > 0 && arr[j] > tmp){arr[j 1] arr[…...
esp32s3 nvs 存储过程中使用malloc和free函数的一点困惑
我的项目中,大量使用了malloc()和free()函数,在使用nvs存储之前没有出现问题。 esp32厂家nvs的blob存储的例程中,有使用malloc()和free(),我参照例程写了自己的blob存储函数f,一开始是可以正常使用的,后来…...
除visio以外的几款好用流程图绘制工具
流程图绘制软件在嵌入式软件开发中扮演着重要的角色,它们能够帮助用户清晰、直观地展示工作流程。以下是几款流行的流程图绘制软件及其特点的详细报告: 思维导图MindMaster MindMaster作为一款专业的思维导图软件,不仅具备强大的思维导图制作…...
CentOS 7 64位 常用命令
一、系统管理命令 systemctl start firewalld.service:启动防火墙服务 systemctl stop firewalld.service:停止防火墙服务 systemctl enable firewalld.service:设置防火墙服务开机自启 systemctl disable firewalld.service:禁止…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
