【深度学习】安全帽检测,目标检测,Faster RCNN训练
文章目录
- 资料
- 环境
- 尝试训练
- 安全帽数据训练
- 测试
- 预测
- 全部数据、代码、训练完的权重等资料见:
资料
依据这个进行训练:
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn
├── backbone: 特征提取网络,可以根据自己的要求选择
├── network_files: Faster R-CNN网络(包括Fast R-CNN以及RPN等模块)
├── train_utils: 训练验证相关模块(包括cocotools)
├── my_dataset.py: 自定义dataset用于读取VOC数据集
├── train_mobilenet.py: 以MobileNetV2做为backbone进行训练
├── train_resnet50_fpn.py: 以resnet50+FPN做为backbone进行训练
├── train_multi_GPU.py: 针对使用多GPU的用户使用
├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试
├── validation.py: 利用训练好的权重验证/测试数据的COCO指标,并生成record_mAP.txt文件
└── pascal_voc_classes.json: pascal_voc标签文件

环境
dockerfile:
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive# 安装基本软件包
RUN apt-get update && \apt-get upgrade -y && \apt-get -y --no-install-recommends install vim wget curl build-essential python3.10-dev python3.10 python3-pip sudo && \update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1 && \apt-get install -y libgl1 libglib2.0-0 ffmpeg tzdata && \ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \echo "Asia/Shanghai" > /etc/timezoneRUN apt-get -y --no-install-recommends install vim wget curl git build-essential python3.10 python3-pip python3.10-venv sudoRUN apt-get install -y libgl1 libglib2.0-0 iputils-ping python3.10-dev libgoogle-perftools-dev nginx# 更改默认Shell为bash
SHELL ["/bin/bash", "-c"]
python 环境:
git clone https://github.com/WZMIAOMIAO/deep-learning-for-image-processing.git
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
conda create -n py38 python=3.8 -y
conda activate py38
# CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch -y
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn
pip install -r requirements.txt
得到readme.md说的一些权重:
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/backbonewget https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
--2024-06-05 13:50:21-- https://download.pytorch.org/models/mobilenet_v2-b0353104.pthmv mobilenet_v2-b0353104.pth mobilenet_v2.pthwget https://download.pytorch.org/models/resnet50-0676ba61.pth
--2024-06-05 13:50:46-- https://download.pytorch.org/models/resnet50-0676ba61.pthmv resnet50-0676ba61.pth resnet50.pthwget https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pthmv fasterrcnn_resnet50_fpn_coco-258fb6c6.pth fasterrcnn_resnet50_fpn_coco.pthmkdir /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/data
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/datawget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
尝试训练
反向commit 镜像:
docker commit 74d9893ccb29 kevinchina/deeplearning:fasterrcnn_train_v1docker push kevinchina/deeplearning:fasterrcnn_train_v1
重启容器:
docker run --gpus all -it -v $PWD:/wkp --shm-size=64g kevinchina/deeplearning:fasterrcnn_train_v1 bash
训练:
conda activate py38
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/
python train_mobilenetv2.py
启动成功:

一轮训练完成后的验证:

安全帽数据训练
安全帽佩戴检测
数据集:https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
加入安全帽数据,小小修改一下源代码的一些小的东西:




启动训练:
python train_mobilenetv2.py
训练完一轮:

训练结束:
Test: Total time: 0:00:52 (0.0858 s / it)
Averaged stats: model_time: 0.0590 (0.0440) evaluator_time: 0.2436 (0.0344)
Accumulating evaluation results...
DONE (t=1.42s).
IoU metric: bboxAverage Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.412Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.695Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.425Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.171Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.540Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.669Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.169Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.395Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.262Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.602Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.714
successful save loss curve!
successful save mAP curve!
测试
用test.txt中测试准确率
python validation.py

预测
(py38) root:/deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn# python predict.py
using cuda:0 device.
inference+NMS time: 0.018668174743652344
docker push kevinchina/deeplearning:fasterrcnn_train_v2
全部数据、代码、训练完的权重等资料见:
https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2
相关文章:
【深度学习】安全帽检测,目标检测,Faster RCNN训练
文章目录 资料环境尝试训练安全帽数据训练测试预测全部数据、代码、训练完的权重等资料见: 资料 依据这个进行训练: https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn ├── bac…...
IDEA2024创建maven项目
1、new->project 2、创建后展示 3、生成resources文件夹 4、测试--编写一个hello文件...
linux上VirtualBox使用
前言 最近想把唯一的windows系统装成linux, 但是确实存在一些特殊软件无法舍弃,所有装完linux需要用虚拟机装个windows 上来使用特定的一些软件(不想用wine了)。 还有对一些特定usb设备的透传,这样才能保证在虚拟机中…...
PID控制算法介绍及使用举例
PID 控制算法是一种常用的反馈控制算法,用于控制系统的稳定性和精度。PID 分别代表比例(Proportional)、积分(Integral)和微分(Derivative),通过组合这三个部分来调节控制输出&#…...
因子区间[牛客周赛44]
思路分析: 我们可以发现125是因子个数的极限了,所以我们可以用二维数组来维护第几个数有几个因子,然后用前缀和算出来每个区间合法个数,通过一个排列和从num里面选2个 ,c num 2 来计算即可 #include<iostream> #include<cstring> #include<string> #include…...
代码随想录算法训练营第四十四天 | 01背包问题理论基础、01背包问题滚动数组、416. 分割等和子集
背包问题其实有很多种,01背包是最基础也是最经典的,软工计科学生一定要掌握的。 01背包问题 代码随想录 视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经…...
【PingPong_注册安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …...
车辆路径规划之Dubins曲线与RS曲线简述
描述 Dubins和RS曲线都是路径规划的经典算法,其中车辆运动学利用RS曲线居多,因此简单介绍Dubins并引出RS曲线。 花了点时间看了二者的论文,并阅读了一个开源的代码。 Dubins曲线 Dubins曲线是在满足曲率约束和规定的始端和末端的切线&#…...
PostgreSQL 和Oracle锁机制对比
PostgreSQL 和Oracle锁机制对比 PostgreSQL 和 Oracle 都是业界广泛使用的关系型数据库管理系统,它们在锁机制方面都有独到的设计来控制并发访问,确保数据的一致性和完整性。下面我们详细比较一下这两个数据库系统的锁机制。 1. 锁类型 PostgreSQL P…...
6月05日,每日信息差
第一、特斯拉在碳博会上展示了其全品类的可持续能源解决方案,包括首次在国内展出的超大型电化学商用储能系统 Megapack 和家庭储能系统 Powerwall。此外,特斯拉还展示了电动汽车三电系统的解构和电池回收技术产品 第二、2024 年第一季度,全球…...
MongoDB~俩大特点管道聚合和数据压缩(snappy)
场景 在MySQL中,通常会涉及多个表的一些操作,MongoDB也类似,有时需要将多个文档甚至是多个集合汇总到一起计算分析(比如求和、取最大值)并返回计算后的结果,这个过程被称为 聚合操作 。 根据官方文档介绍&…...
HTML+CSS+JS 动态登录表单
效果演示 实现了一个登录表单的背景动画效果,包括一个渐变背景、一个输入框和一个登录按钮。背景动画由多个不同大小和颜色的正方形组成,它们在页面上以不同的速度和方向移动。当用户成功登录后,标题会向上移动,表单会消失。 Code <!DOCTYPE html> <html lang=&q…...
统一返回响应
前言 我们为什么要设置统一返回响应 提高代码的可维护性:通过统一返回请求的格式,可以使代码更加清晰和易于维护,减少重复的代码,提高代码质量。 便于调试和测试:统一的返回格式使得在调试和测试时更为简单ÿ…...
大数据学习问题记录
问题记录 node1突然无法连接finalshell node1突然无法连接finalshell 今天我打开虚拟机和finalshell的时候,发现我的node1连接不上finalshell,但是node2、node3依旧可以链接,我在网上找了很多方法,但是是关于全部虚拟机连接不上finalshell&a…...
第N4周:中文文本分类
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 一、预备知识 中文文本分类和英文文本分类都是文本分类,为什么要单独拎出来个中文文本分类呢? 在自然语言处理(NLP&#x…...
【kubernetes】探索k8s集群的pod控制器详解(Deployment、StatefulSet、DaemonSet、Job、CronJob)
目录 一、Pod控制器及其功用 二、pod控制器有多种类型 2.1ReplicaSet 2.1.1ReplicaSet主要三个组件组成 2.2Deployment 2.3DaemonSet 2.4StatefulSet 2.5Job 2.6Cronjob 三、Pod与控制器之间的关系 3.1Deployment 3.2SatefulSet 3.2.1StatefulSet三个组件 3.2.2为…...
直接插入排序
#include <stdio.h>void insert_sort(int arr[], int n) {int i;int j;int tmp;for (i 1; i < n; i){tmp arr[i];j i - 1;// 将要插入的元素与数组中的元素比较(从后向前比) while (j > 0 && arr[j] > tmp){arr[j 1] arr[…...
esp32s3 nvs 存储过程中使用malloc和free函数的一点困惑
我的项目中,大量使用了malloc()和free()函数,在使用nvs存储之前没有出现问题。 esp32厂家nvs的blob存储的例程中,有使用malloc()和free(),我参照例程写了自己的blob存储函数f,一开始是可以正常使用的,后来…...
除visio以外的几款好用流程图绘制工具
流程图绘制软件在嵌入式软件开发中扮演着重要的角色,它们能够帮助用户清晰、直观地展示工作流程。以下是几款流行的流程图绘制软件及其特点的详细报告: 思维导图MindMaster MindMaster作为一款专业的思维导图软件,不仅具备强大的思维导图制作…...
CentOS 7 64位 常用命令
一、系统管理命令 systemctl start firewalld.service:启动防火墙服务 systemctl stop firewalld.service:停止防火墙服务 systemctl enable firewalld.service:设置防火墙服务开机自启 systemctl disable firewalld.service:禁止…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果。链条循环: Bean A → Bean…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
