当前位置: 首页 > news >正文

【深度学习】安全帽检测,目标检测,Faster RCNN训练

文章目录

  • 资料
  • 环境
  • 尝试训练
  • 安全帽数据训练
  • 测试
  • 预测
  • 全部数据、代码、训练完的权重等资料见:

资料

依据这个进行训练:
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn

├── backbone: 特征提取网络,可以根据自己的要求选择
├── network_files: Faster R-CNN网络(包括Fast R-CNN以及RPN等模块)
├── train_utils: 训练验证相关模块(包括cocotools)
├── my_dataset.py: 自定义dataset用于读取VOC数据集
├── train_mobilenet.py: 以MobileNetV2做为backbone进行训练
├── train_resnet50_fpn.py: 以resnet50+FPN做为backbone进行训练
├── train_multi_GPU.py: 针对使用多GPU的用户使用
├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试
├── validation.py: 利用训练好的权重验证/测试数据的COCO指标,并生成record_mAP.txt文件
└── pascal_voc_classes.json: pascal_voc标签文件

在这里插入图片描述

环境

dockerfile:

FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive# 安装基本软件包
RUN apt-get update && \apt-get upgrade -y && \apt-get -y --no-install-recommends install vim wget curl build-essential python3.10-dev python3.10 python3-pip sudo && \update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1 && \apt-get install -y libgl1 libglib2.0-0 ffmpeg tzdata && \ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \echo "Asia/Shanghai" > /etc/timezoneRUN apt-get -y --no-install-recommends install vim wget curl git build-essential python3.10 python3-pip python3.10-venv sudoRUN apt-get install -y libgl1 libglib2.0-0 iputils-ping python3.10-dev libgoogle-perftools-dev nginx# 更改默认Shell为bash
SHELL ["/bin/bash", "-c"]

python 环境:

git clone https://github.com/WZMIAOMIAO/deep-learning-for-image-processing.git
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
conda create -n py38 python=3.8 -y
conda activate py38
# CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch -y
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn
pip install -r requirements.txt

得到readme.md说的一些权重:

cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/backbonewget https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
--2024-06-05 13:50:21--  https://download.pytorch.org/models/mobilenet_v2-b0353104.pthmv mobilenet_v2-b0353104.pth mobilenet_v2.pthwget https://download.pytorch.org/models/resnet50-0676ba61.pth
--2024-06-05 13:50:46--  https://download.pytorch.org/models/resnet50-0676ba61.pthmv resnet50-0676ba61.pth resnet50.pthwget https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pthmv fasterrcnn_resnet50_fpn_coco-258fb6c6.pth fasterrcnn_resnet50_fpn_coco.pthmkdir /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/data
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/datawget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

尝试训练

反向commit 镜像:

docker commit 74d9893ccb29 kevinchina/deeplearning:fasterrcnn_train_v1docker push kevinchina/deeplearning:fasterrcnn_train_v1

重启容器:

docker run --gpus all -it -v $PWD:/wkp --shm-size=64g kevinchina/deeplearning:fasterrcnn_train_v1 bash

训练:

conda activate py38
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/
python train_mobilenetv2.py

启动成功:
在这里插入图片描述
一轮训练完成后的验证:
在这里插入图片描述

安全帽数据训练

安全帽佩戴检测
数据集:https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset

加入安全帽数据,小小修改一下源代码的一些小的东西:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

启动训练:

python train_mobilenetv2.py

训练完一轮:
在这里插入图片描述
训练结束:

Test:  Total time: 0:00:52 (0.0858 s / it)
Averaged stats: model_time: 0.0590 (0.0440)  evaluator_time: 0.2436 (0.0344)
Accumulating evaluation results...
DONE (t=1.42s).
IoU metric: bboxAverage Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.412Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.695Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.425Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.171Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.540Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.669Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.169Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.395Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.466Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.262Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.602Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.714
successful save loss curve!
successful save mAP curve!

测试

用test.txt中测试准确率

python validation.py

在这里插入图片描述

预测

(py38) root:/deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn# python  predict.py
using cuda:0 device.
inference+NMS time: 0.018668174743652344

docker push kevinchina/deeplearning:fasterrcnn_train_v2

全部数据、代码、训练完的权重等资料见:

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

相关文章:

【深度学习】安全帽检测,目标检测,Faster RCNN训练

文章目录 资料环境尝试训练安全帽数据训练测试预测全部数据、代码、训练完的权重等资料见: 资料 依据这个进行训练: https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn ├── bac…...

IDEA2024创建maven项目

1、new->project 2、创建后展示 3、生成resources文件夹 4、测试--编写一个hello文件...

linux上VirtualBox使用

前言 最近想把唯一的windows系统装成linux, 但是确实存在一些特殊软件无法舍弃,所有装完linux需要用虚拟机装个windows 上来使用特定的一些软件(不想用wine了)。 还有对一些特定usb设备的透传,这样才能保证在虚拟机中…...

PID控制算法介绍及使用举例

PID 控制算法是一种常用的反馈控制算法,用于控制系统的稳定性和精度。PID 分别代表比例(Proportional)、积分(Integral)和微分(Derivative),通过组合这三个部分来调节控制输出&#…...

因子区间[牛客周赛44]

思路分析: 我们可以发现125是因子个数的极限了,所以我们可以用二维数组来维护第几个数有几个因子,然后用前缀和算出来每个区间合法个数,通过一个排列和从num里面选2个 ,c num 2 来计算即可 #include<iostream> #include<cstring> #include<string> #include…...

代码随想录算法训练营第四十四天 | 01背包问题理论基础、01背包问题滚动数组、416. 分割等和子集

背包问题其实有很多种&#xff0c;01背包是最基础也是最经典的&#xff0c;软工计科学生一定要掌握的。 01背包问题 代码随想录 视频讲解&#xff1a;带你学透0-1背包问题&#xff01;| 关于背包问题&#xff0c;你不清楚的地方&#xff0c;这里都讲了&#xff01;| 动态规划经…...

【PingPong_注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞 …...

车辆路径规划之Dubins曲线与RS曲线简述

描述 Dubins和RS曲线都是路径规划的经典算法&#xff0c;其中车辆运动学利用RS曲线居多&#xff0c;因此简单介绍Dubins并引出RS曲线。 花了点时间看了二者的论文&#xff0c;并阅读了一个开源的代码。 Dubins曲线 Dubins曲线是在满足曲率约束和规定的始端和末端的切线&#…...

PostgreSQL 和Oracle锁机制对比

PostgreSQL 和Oracle锁机制对比 PostgreSQL 和 Oracle 都是业界广泛使用的关系型数据库管理系统&#xff0c;它们在锁机制方面都有独到的设计来控制并发访问&#xff0c;确保数据的一致性和完整性。下面我们详细比较一下这两个数据库系统的锁机制。 1. 锁类型 PostgreSQL P…...

6月05日,每日信息差

第一、特斯拉在碳博会上展示了其全品类的可持续能源解决方案&#xff0c;包括首次在国内展出的超大型电化学商用储能系统 Megapack 和家庭储能系统 Powerwall。此外&#xff0c;特斯拉还展示了电动汽车三电系统的解构和电池回收技术产品 第二、2024 年第一季度&#xff0c;全球…...

MongoDB~俩大特点管道聚合和数据压缩(snappy)

场景 在MySQL中&#xff0c;通常会涉及多个表的一些操作&#xff0c;MongoDB也类似&#xff0c;有时需要将多个文档甚至是多个集合汇总到一起计算分析&#xff08;比如求和、取最大值&#xff09;并返回计算后的结果&#xff0c;这个过程被称为 聚合操作 。 根据官方文档介绍&…...

HTML+CSS+JS 动态登录表单

效果演示 实现了一个登录表单的背景动画效果,包括一个渐变背景、一个输入框和一个登录按钮。背景动画由多个不同大小和颜色的正方形组成,它们在页面上以不同的速度和方向移动。当用户成功登录后,标题会向上移动,表单会消失。 Code <!DOCTYPE html> <html lang=&q…...

统一返回响应

前言 我们为什么要设置统一返回响应 提高代码的可维护性&#xff1a;通过统一返回请求的格式&#xff0c;可以使代码更加清晰和易于维护&#xff0c;减少重复的代码&#xff0c;提高代码质量。 便于调试和测试&#xff1a;统一的返回格式使得在调试和测试时更为简单&#xff…...

大数据学习问题记录

问题记录 node1突然无法连接finalshell node1突然无法连接finalshell 今天我打开虚拟机和finalshell的时候&#xff0c;发现我的node1连接不上finalshell,但是node2、node3依旧可以链接&#xff0c;我在网上找了很多方法&#xff0c;但是是关于全部虚拟机连接不上finalshell&a…...

第N4周:中文文本分类

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 一、预备知识 中文文本分类和英文文本分类都是文本分类&#xff0c;为什么要单独拎出来个中文文本分类呢&#xff1f; 在自然语言处理&#xff08;NLP&#x…...

【kubernetes】探索k8s集群的pod控制器详解(Deployment、StatefulSet、DaemonSet、Job、CronJob)

目录 一、Pod控制器及其功用 二、pod控制器有多种类型 2.1ReplicaSet 2.1.1ReplicaSet主要三个组件组成 2.2Deployment 2.3DaemonSet 2.4StatefulSet 2.5Job 2.6Cronjob 三、Pod与控制器之间的关系 3.1Deployment 3.2SatefulSet 3.2.1StatefulSet三个组件 3.2.2为…...

直接插入排序

#include <stdio.h>void insert_sort(int arr[], int n) {int i;int j;int tmp;for (i 1; i < n; i){tmp arr[i];j i - 1;// 将要插入的元素与数组中的元素比较&#xff08;从后向前比&#xff09; while (j > 0 && arr[j] > tmp){arr[j 1] arr[…...

esp32s3 nvs 存储过程中使用malloc和free函数的一点困惑

我的项目中&#xff0c;大量使用了malloc()和free()函数&#xff0c;在使用nvs存储之前没有出现问题。 esp32厂家nvs的blob存储的例程中&#xff0c;有使用malloc()和free()&#xff0c;我参照例程写了自己的blob存储函数f&#xff0c;一开始是可以正常使用的&#xff0c;后来…...

除visio以外的几款好用流程图绘制工具

流程图绘制软件在嵌入式软件开发中扮演着重要的角色&#xff0c;它们能够帮助用户清晰、直观地展示工作流程。以下是几款流行的流程图绘制软件及其特点的详细报告&#xff1a; 思维导图MindMaster MindMaster作为一款专业的思维导图软件&#xff0c;不仅具备强大的思维导图制作…...

CentOS 7 64位 常用命令

一、系统管理命令 systemctl start firewalld.service&#xff1a;启动防火墙服务 systemctl stop firewalld.service&#xff1a;停止防火墙服务 systemctl enable firewalld.service&#xff1a;设置防火墙服务开机自启 systemctl disable firewalld.service&#xff1a;禁止…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...