【MATLAB源码-第222期】基于matlab的改进蚁群算法三维栅格地图路径规划,加入精英蚁群策略。包括起点终点,障碍物,着火点,楼梯。
操作环境:
MATLAB 2022a
1、算法描述
蚁群算法(Ant Colony Optimization,ACO)是一种通过模拟蚂蚁觅食行为的启发式优化算法。它由意大利学者Marco Dorigo在20世纪90年代初提出,最初用于解决旅行商问题(TSP)。这种算法通过蚂蚁在路径上释放信息素的机制,引导蚂蚁群体找到最优解。然而,传统蚁群算法存在一些缺陷,如收敛速度慢、易陷入局部最优解等。为了解决这些问题,提出了一种改进的精英蚁群策略(Elite Ant Colony Optimization,EACO),旨在提高算法的性能和效果。
传统蚁群算法概述
蚁群算法的灵感来自自然界中蚂蚁觅食的过程。蚂蚁在寻找食物时,会在路径上留下信息素(Pheromone),其他蚂蚁通过感知信息素的浓度来选择路径。这种信息素具有挥发性,时间久了会逐渐消失。信息素的浓度高低决定了蚂蚁选择路径的概率,路径上信息素越浓,选择该路径的概率就越大。
- 初始化:设定蚁群的数量、信息素初始值、挥发系数、信息素重要性因子和启发式因子等参数。
- 路径构建:每只蚂蚁从起始节点出发,依据信息素浓度和启发式信息选择下一步的路径,直到完成一条完整的路径。
- 信息素更新:蚂蚁完成路径后,根据路径的优劣对路径上的信息素进行更新。优质路径上的信息素增加,而所有路径上的信息素都会随时间挥发。
- 迭代:重复路径构建和信息素更新的过程,直到达到预定的迭代次数或满足其他停止条件。
传统蚁群算法的不足
尽管传统蚁群算法在解决某些优化问题时表现出色,但它在处理复杂问题时仍存在以下不足:
- 收敛速度慢:由于每只蚂蚁都独立选择路径,导致信息素的积累需要较长时间,从而影响算法的收敛速度。
- 易陷入局部最优:信息素的正反馈机制可能导致蚂蚁在某些路径上过度集中,从而陷入局部最优解,难以跳出找到全局最优解。
- 参数敏感性高:算法性能对参数的依赖较大,不同问题需要调整不同的参数,增加了算法的复杂性。
精英蚁群策略的改进
精英蚁群策略(EACO)是对传统蚁群算法的一种改进,主要通过引入精英蚂蚁的概念,增强全局搜索能力,提高收敛速度和解决问题的质量。具体改进措施如下:
-
精英蚂蚁的引入:在每一代蚁群中,选出表现最好的几只蚂蚁作为精英蚂蚁。这些精英蚂蚁的信息素更新对整个蚁群的信息素分布具有更大的影响力。这样可以加速信息素在优质路径上的积累,提高收敛速度。
-
信息素更新策略的改进:精英蚁群策略不仅更新所有蚂蚁走过的路径信息素,还会对精英蚂蚁走过的路径进行重点更新。精英蚂蚁的路径上会增加更多的信息素,从而提高其他蚂蚁选择优质路径的概率。
-
多样性保持机制:为了避免算法过早收敛到局部最优解,EACO引入了多样性保持机制。具体方法包括增加信息素的挥发速率、定期重新初始化部分信息素等,以保持路径选择的多样性。
-
启发式信息的动态调整:在搜索过程中,根据当前解的质量动态调整启发式信息,使蚂蚁在不同阶段对启发式信息的依赖程度有所变化,增强全局搜索能力。
EACO的优势
通过以上改进,精英蚁群策略的改进蚁群算法在多个方面表现出优于传统蚁群算法的性能:
- 加快收敛速度:精英蚂蚁的引入使得优质路径上的信息素积累更快,从而加快了算法的收敛速度。
- 提高解的质量:精英蚂蚁策略增强了全局搜索能力,减少了陷入局部最优解的概率,从而提高了解的质量。
- 增强鲁棒性:多样性保持机制和启发式信息的动态调整使得算法在面对不同问题时表现更为稳定,具有更强的适应性。
应用实例
为了验证精英蚁群策略的改进效果,本文以旅行商问题(TSP)为例进行实验。TSP是经典的组合优化问题,其目标是找到一条经过所有给定城市且总路径长度最短的巡回路径。实验结果表明,EACO在解决TSP问题时,不仅收敛速度明显快于传统蚁群算法,而且得到的最优路径长度也更短,解的质量更高。
结论
精英蚁群策略的改进蚁群算法通过引入精英蚂蚁、改进信息素更新策略、保持路径选择多样性和动态调整启发式信息等措施,有效解决了传统蚁群算法收敛速度慢、易陷入局部最优等问题。实验结果表明,EACO在解决组合优化问题时表现出更快的收敛速度和更高的解的质量。这种改进算法在实际应用中具有广泛的前景,尤其适用于解决大规模、复杂的优化问题。
2、仿真结果演示





3、关键代码展示
略
4、MATLAB 源码获取
V
点击下方名片
相关文章:
【MATLAB源码-第222期】基于matlab的改进蚁群算法三维栅格地图路径规划,加入精英蚁群策略。包括起点终点,障碍物,着火点,楼梯。
操作环境: MATLAB 2022a 1、算法描述 蚁群算法(Ant Colony Optimization,ACO)是一种通过模拟蚂蚁觅食行为的启发式优化算法。它由意大利学者Marco Dorigo在20世纪90年代初提出,最初用于解决旅行商问题(T…...
百度ERNIE系列预训练语言模型浅析(4)-总结篇
总结:ERNIE 3.0与ERNIE 2.0比较 (1)相同点: 采用连续学习 采用了多个语义层级的预训练任务 (2)不同点: ERNIE 3.0 Transformer-XL Encoder(自回归自编码), ERNIE 2.0 Transformer Encode…...
Ubuntu 20.04 LTS配置JDK、Git
一、配置JDK 1.1 更新系统 执行以下命令 sudo apt update 出现以下界面即为安装成功 1.2 安装openjdk-11-jdk Ubuntu20.04中没有默认JDK,执行以下指令安装,默认会自动配置一些必要环境变量 sudo apt install openjdk-11-jdk 1.3 配置环境变量&…...
外汇天眼:Marqeta加速欧洲业务发展,华沙办公室正式开幕
Marqeta,全球现代卡发行平台,今天宣布在波兰华沙设立新办公室,以支持其长期的业务和增长战略。通过在波兰设立业务,Marqeta直接获得了进入欧盟的通道,为其在跨境增长和提供增强服务奠定了良好基础。波兰作为欧洲中心位…...
使用【AliceCarousel】实现轮播功能
无论是在react还是vue项目中,我们都可能会遇到需要轮播的场景,在实习中,遇到了实现组件轮播的需求,下面进行简要记录。 1. 安装AliceCarousel npm install react-alice-carousel --save 2. 引入AliceCarousel组件 import Reac…...
全屋智能的本质是低成本的重构
全屋智能(这里指的不是每个电器都可以在APP上控制,而是基于场景化的全屋智能),我第一次去圣都总部听讲的时候是不准备做的(我的理解是这玩意儿带来的是至少十万的成本)。但随着对于装修各项事物的接触&…...
开发一个comfyui的自定义节点-支持输入中文prompt
文章目录 目标功能开发环境实现过程翻译中文CLIP编码拓展仓库地址完整代码目标功能 目前comfyui的prompt提示词输入节点 CLIP Text Encode 只支持输入英文的prompt,而有时候我们需要自己制定一些prompt,所以就得将我们想要的提示词翻译为英文后再复制粘贴到该节点的输入框中…...
代码随想录第二十九天打卡| 491.递增子序列,46.全排列,47.全排列 II
491.递增子序列 本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。 代码随想录 视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili class Solution { public:…...
音频数据上的会话情感分析
情感分析,也被称为观点挖掘,是自然语言处理(NLP)中一个流行的任务,因为它有着广泛的工业应用。在专门将自然语言处理技术应用于文本数据的背景下,主要目标是训练出一个能够将给定文本分类到不同情感类别的模型。下图给出了情感分类器的高级概述。 例如,三…...
算法金 | 一文读懂K均值(K-Means)聚类算法
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 1. 引言 数据分析中聚类算法的作用 在数据分析中,聚类算法用于发现数据集中的固有分组,通过将相似对象聚集在一…...
江协科技STM32学习-1 购买24Mhz采样逻辑分析仪
前言: 本文是根据哔哩哔哩网站上“江协科技STM32”视频的学习笔记,在这里会记录下江协科技STM32开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了江协科技STM32教学视频和链接中的内容。 引用: STM32入门教程-2023版 细致讲…...
支付系统-业务账单
target:离开柬埔寨倒计时-210day 前言 最近不知道该写什么了,很多东西要写起来非常耗时间,写作是真的不容易呀 我们的支付系统账单有两大类,一个是业务账单还有一个就是资金记录,都是引发资金流后的资金变动表现&…...
AI引领天文新篇章:中科院发现107例中性碳吸收线,揭示宇宙深邃奥秘
在浩渺无垠的宇宙中,探索未知的天文现象一直是科学家们不懈的追求。近日,中科院上海天文台的研究团队在《天文物理杂志》(MNRAS)上发布了重要研究成果:利用人工智能技术,成功探测到了107例中性碳吸收线&…...
python 删除pdf 空白页
环境 python 3.10 PyPDF2 3.0.1 安装 pip install PyPDF2流程 将空白页和内容页读取出来,看看内部结构有什么不同以此为依据,遍历整个PDF 文件,标记处有内容的页面,写入到另外一个PDF文件。 python 代码 # 每一个页都是一个…...
flutter as连接网易模拟器
网易模拟器下载 Mac 使用MuMu模拟器调试 Flutter开发 Android Studio 安装第三方模拟器—网易MuMu Mac 安卓Studio使用外部模拟器 Mac电脑:Android Studio 连接 MUMU 网易模拟器 Mac 上 Android Studio 链接网易 MuMu 模拟器调试 在 .zshrc 中设置 adb 二进制文…...
fpga控制dsp6657上电启动配置
1 Verilog代码 dspboot_config.v timescale 1ns / 1ps //dsp上电启动配置 module dspboot_config (///时钟和复位input SYS_CLK_50MHz,input SYS_RST_n,//DSP启动配置output DSP_POR,output DSP_RESETFULL,output DSP_RESET,inout [12:…...
Tomcat启动闪退问题解决方法
Tomcat是一个广泛使用的开源Web服务器和Servlet容器。它的稳定性和灵活性使其在Java Web开发领域受到广泛关注。然而,在实际使用过程中,我们有时会遇到Tomcat启动后立即关闭的问题,这种现象通常被称为"闪退"。下面我将针对这个问题…...
【多模态】34、LLaVA-v1.5 | 微软开源,用极简框架来实现高效的多模态 LMM 模型
文章目录 一、背景二、方法2.1 提升点2.2 训练样本 三、效果3.1 整体效果对比3.2 模型对于 zero-shot 形式的指令的结果生成能力3.3 模型对于 zero-shot 多语言的能力3.4 限制 四、训练4.1 数据4.2 超参 五、评测六、代码 论文:Improved Baselines with Visual Inst…...
文件编码概念
文件的读取 open()函数: 打开一个已存在的文件,或者创建一个新文件 open(name,mode,encoding) name:是要打开的目标文件名的字符串(可以包含文件所在的具体路径) mode:设置打开文件的模式(访问模式)&am…...
uni-app(优医咨询)项目实战 - 第7天
学习目标: 能够基于 WebSocket 完成问诊全流程 能够使用 uniCloud 云存储上传文件 能够完成查看电子处方的功能 能够完成医生评价的功能 一、问诊室 以对话聊天的方式向医生介绍病情并获取诊断方案,聊天的内容支持文字和图片两种形式。 首先新建一…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
