当前位置: 首页 > news >正文

深度学习 - 张量的广播机制和复杂运算

张量的广播机制(Broadcasting)是一种处理不同形状张量进行数学运算的方式。通过广播机制,PyTorch可以自动扩展较小的张量,使其与较大的张量形状兼容,从而进行元素级的运算。广播机制遵循以下规则:

  1. 如果张量维度不相同,在较小张量的形状前面加上1,直到两个张量的维度相同。
  2. 如果两个张量在某个维度的长度不相同,但其中一个张量在该维度的长度为1,那么在该维度上,较小长度的张量会被扩展为较大长度。
  3. 如果两个张量在任何维度上长度不同且均不为1,则无法进行广播,会引发错误。

广播机制的规则示例

规则1:在较小张量的形状前面加1
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1], [2], [3]])
c = a + b
print(c)

运行结果

tensor([[2, 3, 4],[3, 4, 5],[4, 5, 6]])

解释a的形状是(3,), b的形状是(3,1)。在较小的张量前面加1变成(1,3)和(3,1),然后在第0维度上广播。

规则2:在某个维度的长度为1
a = torch.tensor([[1, 2, 3]])
b = torch.tensor([[4], [5], [6]])
c = a + b
print(c)

运行结果

tensor([[5, 6, 7],[6, 7, 8],[7, 8, 9]])

解释a的形状是(1,3), b的形状是(3,1)。a被广播到(3,3),b也被广播到(3,3)。

规则3:无法广播的情况
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1, 2], [3, 4]])
try:c = a + b
except RuntimeError as e:print(e)

运行结果

The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

解释a的形状是(3,), b的形状是(2,2),它们的形状不兼容,无法进行广播。

广播机制的详细示例

示例1:标量与多维张量相加
a = torch.tensor(5)
b = torch.tensor([[1, 2, 3], [4, 5, 6]])
c = a + b
print(c)

运行结果

tensor([[ 6,  7,  8],[ 9, 10, 11]])

解释:标量a被广播到与b形状匹配,变成(2,3)。

示例2:形状不一致但能广播
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1], [2], [3]])
c = a + b
print(c)

运行结果

tensor([[2, 3, 4],[3, 4, 5],[4, 5, 6]])

解释a的形状是(3,), b的形状是(3,1)。a被广播到(3,3),b被广播到(3,3)。

示例3:不同维度的广播
a = torch.tensor([1, 2, 3])
b = torch.tensor([[[1]], [[2]], [[3]]])
c = a + b
print(c)

运行结果

tensor([[[2, 3, 4]],[[3, 4, 5]],[[4, 5, 6]]])

解释a的形状是(3,),b的形状是(3,1,1)。a被广播到(3,1,3),b被广播到(3,1,3)。

示例4:标量与高维张量的广播
a = torch.tensor(10)
b = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
c = a * b
print(c)

运行结果

tensor([[[10, 20],[30, 40]],[[50, 60],[70, 80]]])

解释:标量a被广播到与b的形状匹配。

示例5:不同形状的广播加法
a = torch.tensor([[1, 2], [3, 4], [5, 6]])
b = torch.tensor([10, 20])
c = a + b
print(c)

运行结果

tensor([[11, 22],[13, 24],[15, 26]])

解释a的形状是(3,2),b的形状是(2,)。b被广播到(3,2)。

张量的基本操作

示例1:基本运算
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = torch.tensor([[[2, 2], [2, 2]], [[2, 2], [2, 2]]])
c = a * b
print(c)

运行结果

tensor([[[ 2,  4],[ 6,  8]],[[10, 12],[14, 16]]])

解释:对ab中的每个元素进行乘法运算。

示例2:列表索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a[0]
print(b)

运行结果

tensor([[1, 2],[3, 4]])

解释:选择张量a的第0个二维子张量。

示例3:范围索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a[:, 0, :]
print(b)

运行结果

tensor([[1, 2],[5, 6]])

解释:选择张量a中所有的第0个二维子张量的所有元素。

示例4:布尔索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a > 4
c = a[b]
print(c)

运行结果

tensor([5, 6, 7, 8])

解释:选择张量a中所有大于4的元素。

示例5:多维索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a[1, 1, 1]
print(b)

运行结果

tensor(8)

解释:选择张量a的第二个三维子张量中的第二个二维子张量中的第二个元素。

示例6:形状操作(reshape)
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a.reshape(4, 2)
print(b)

运行结果

tensor([[1, 2],[3, 4],[5, 6],[7, 8]])

解释:将张量a重塑为形状为(4, 2)的张量。

示例7:形状操作(squeeze)
a = torch.tensor([[[1, 2]], [[3, 4]], [[5, 6]]])
b = a.squeeze()
print(b)

运行结果

tensor([[1, 2],[3, 4],[5, 6]])

解释:删除张量a中所有为1的维度。

示例8:形状操作(unsqueeze)
a = torch.tensor([[1, 2], [3, 4], [5, 6]])
b = a.unsqueeze(1)
print(b)

运行结果

tensor([[[1, 2]],[[3, 4]],[[5, 6]]])

解释:在张量a的第一维度增加一个维度。

示例9:形状操作(transpose)
a = torch.tensor([[[1, 2, 3], [4, 5, 6]]])
b = a.transpose(1, 2)
print(b)

运行结果

tensor([[[1, 4],[2, 5],[3, 6]]])

解释:交换张量a的第1维和第2维。

示例10:形状操作(permute)
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a.permute(2, 0, 1)
print(b)

运行结果

tensor([[[1, 3],[5, 7]],[[2, 4],[6, 8]]])

解释:根据指定的顺序重新排列张量a的维度。

相关文章:

深度学习 - 张量的广播机制和复杂运算

张量的广播机制(Broadcasting)是一种处理不同形状张量进行数学运算的方式。通过广播机制,PyTorch可以自动扩展较小的张量,使其与较大的张量形状兼容,从而进行元素级的运算。广播机制遵循以下规则: 如果张量…...

【CSS】will-change 属性详解

目录 基本语法属性值常见用途will-change 如何用于优化动画效果示例: will-change 是一个 CSS 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化渲染性能,提前做一些准备工作,从而提高性能。 基本语法…...

linux安装mysql后,配置mysql,并连接navicat软件

Xshell连接登陆服务器 输入全局命令 mysql -u root -p 回车后,输入密码,不显示输入的密码 注意mysql服务状态,是否运行等 修改配置文件my.cnf,这里没找到就找my.ini,指定有一个是对的 find / -name my.cnf 接下…...

【学习笔记】Axios、Promise

TypeScript 1、Axios 1.1、概述 1.2、axios 的基本使用 1.3、axios 的请求方式及对应的 API 1.4、axios 请求的响应结果结构 1.5、axios 常用配置选项 1.6、axios.create() 1.7、拦截器 1.8、取消请求2、Promise 2.1、封装 fs 读…...

自然资源-关于加强规划实施监督管理的指导意见(浙江省自然资源厅学习借鉴)

自然资源-关于加强规划实施监督管理的指导意见(浙江省自然资源厅(征求意见稿)学习借鉴 以下为征求意见稿的内容,很多干活: 各市、县(市、区)自然资源主管部门: 为加强国土空间规划…...

408链表的创建和初始化

首先第一个头文件,定义结构体类型 typedef struct LNode {int data;struct LNode* next; }LNode,*LinkList; //可能作为第一次写c语言的小伙伴看不懂这一段typedef是如何定义的 //基本的解释如下所示 //typedef struct LNode LNode; //typedef struct LNode* LinkL…...

Python数据框/列表生成一列多个同样的值

例1:Python生成100个数字2 方法一: import numpy as np a np.random.randint(2,3,100) 方法二: a [2] list a * 100 #100个数字2的列表 例2:生成100个字符串棒 b 棒 list_b b * 100...

使用 MDC 实现日志链路跟踪,包教包会!

在微服务环境中,我们经常使用 Skywalking、Spring Cloud Sleut 等去实现整体请求链路的追踪,但是这个整体运维成本高,架构复杂,本次我们来使用 MDC 通过 Log 来实现一个轻量级的会话事务跟踪功能,需要的朋友可以参考一…...

【成都信息工程大学】只考程序设计!成都信息工程大学计算机考研考情分析!

成都信息工程大学(Chengdu University of Information Technology),简称“成信大”,由中国气象局和四川省人民政府共建,入选中国首批“卓越工程师教育培养计划”、“2011计划”、“中西部高校基础能力建设工程”、四川…...

将单列数据帧转换成多列数据帧

文章目录 1. 查看数据文件2. 读取数据文件得到单例数据帧3. 将单列数据帧转换成多列数据帧 在本次实战中,我们的目标是将存储在HDFS上的以逗号分隔的文本文件student.txt转换为结构化的Spark DataFrame。首先,使用spark.read.text读取文件,得…...

信息学奥赛初赛天天练-20-完善程序-vector数组参数引用传递、二分中值与二分边界应用的深度解析

PDF文档公众号回复关键字:20240605 1 2023 CSP-J 完善程序1 完善程序(单选题,每小题 3 分,共计 30 分) 原有长度为 n1,公差为1等升数列,将数列输到程序的数组时移除了一个元素,导致长度为 n 的开序数组…...

推荐系统学习 一

参考:一文看懂推荐系统:召回08:双塔模型——线上服务需要离线存物品向量、模型更新分为全量更新和增量更新_数据库全量更新和增量更新流程图-CSDN博客 一文看懂推荐系统:概要01:推荐系统的基本概念_王树森 小红书-CSD…...

分库分表详解

文章目录 分库分表概述分库分表详解分库分表的策略分库分表的注意事项常用的分库分表中间件mysql单表达到多少数据量需要分库分表数据库分库分表缺点分表要停服吗,不停服怎么做 分库分表概述 分库分表是数据库架构设计中的一种常见策略,尤其是在面对大规…...

【java前端课堂】04_类的继承

类的继承 在Java中,继承是面向对象编程的四大基本特性之一,它允许我们根据一个已有的类来定义一个新的类,这个新的类继承了原有类的特性(属性和方法),并可以添加新的特性或修改原有特性。这样,…...

React nginx配置,一个端口代理多个项目(转发后找不到CSS,JS及图片资源问题解决)

场景: nginx 配置负载均衡,甲方只提供一个端口,一个域名地址 方法: 一个端口一个域名匹配多个应用 方法一: 依靠设备浏览器区分: 使用UserAgent头来识别用户的客户端, CDN监测vary头的信息,如果内容不一致…...

Unity协程详解

什么是协程 协程,即Coroutine(协同程序),就是开启一段和主程序异步执行的逻辑处理,什么是异步执行,异步执行是指程序的执行并不是按照从上往下执行。如果我们学过c语言,我们应该知道&#xff0…...

【iOS】UI学习(二)

目录 前言UIViewContorllerUIViewContorller基础UIViewContorller使用 定时器和视图移动UISwitch控件UIProgressView和UISlider总结 前言 本篇博客是笔者在学习UI部分内容时的成果和遇到的一些问题,既是我自己的学习笔记,也希望对你有帮助~ …...

React路由(React笔记之五)

本文是结合实践中和学习技术文章总结出来的笔记(个人使用),如有雷同纯属正常((✿◠‿◠)) 喜欢的话点个赞,谢谢! React路由介绍 现在前端的项目一般都是SPA单页面应用,不再是以前多个页面多套HTML代码项目了,应用内的跳转不需要刷新页面就能完成页面跳转靠的就是路由系统 R…...

调用讯飞星火API实现图像生成

目录 1. 作者介绍2. 关于理论方面的知识介绍3. 关于实验过程的介绍,完整实验代码,测试结果3.1 API获取3.2 代码解析与运行结果3.2.1 完整代码3.2.2 运行结果 3.3 界面的编写(进阶) 4. 问题分析5. 参考链接 1. 作者介绍 刘来顺&am…...

reduce过滤递归符合条件的数据

图片展示 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head><…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...