当前位置: 首页 > news >正文

深度学习 - 张量的广播机制和复杂运算

张量的广播机制(Broadcasting)是一种处理不同形状张量进行数学运算的方式。通过广播机制,PyTorch可以自动扩展较小的张量,使其与较大的张量形状兼容,从而进行元素级的运算。广播机制遵循以下规则:

  1. 如果张量维度不相同,在较小张量的形状前面加上1,直到两个张量的维度相同。
  2. 如果两个张量在某个维度的长度不相同,但其中一个张量在该维度的长度为1,那么在该维度上,较小长度的张量会被扩展为较大长度。
  3. 如果两个张量在任何维度上长度不同且均不为1,则无法进行广播,会引发错误。

广播机制的规则示例

规则1:在较小张量的形状前面加1
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1], [2], [3]])
c = a + b
print(c)

运行结果

tensor([[2, 3, 4],[3, 4, 5],[4, 5, 6]])

解释a的形状是(3,), b的形状是(3,1)。在较小的张量前面加1变成(1,3)和(3,1),然后在第0维度上广播。

规则2:在某个维度的长度为1
a = torch.tensor([[1, 2, 3]])
b = torch.tensor([[4], [5], [6]])
c = a + b
print(c)

运行结果

tensor([[5, 6, 7],[6, 7, 8],[7, 8, 9]])

解释a的形状是(1,3), b的形状是(3,1)。a被广播到(3,3),b也被广播到(3,3)。

规则3:无法广播的情况
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1, 2], [3, 4]])
try:c = a + b
except RuntimeError as e:print(e)

运行结果

The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

解释a的形状是(3,), b的形状是(2,2),它们的形状不兼容,无法进行广播。

广播机制的详细示例

示例1:标量与多维张量相加
a = torch.tensor(5)
b = torch.tensor([[1, 2, 3], [4, 5, 6]])
c = a + b
print(c)

运行结果

tensor([[ 6,  7,  8],[ 9, 10, 11]])

解释:标量a被广播到与b形状匹配,变成(2,3)。

示例2:形状不一致但能广播
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1], [2], [3]])
c = a + b
print(c)

运行结果

tensor([[2, 3, 4],[3, 4, 5],[4, 5, 6]])

解释a的形状是(3,), b的形状是(3,1)。a被广播到(3,3),b被广播到(3,3)。

示例3:不同维度的广播
a = torch.tensor([1, 2, 3])
b = torch.tensor([[[1]], [[2]], [[3]]])
c = a + b
print(c)

运行结果

tensor([[[2, 3, 4]],[[3, 4, 5]],[[4, 5, 6]]])

解释a的形状是(3,),b的形状是(3,1,1)。a被广播到(3,1,3),b被广播到(3,1,3)。

示例4:标量与高维张量的广播
a = torch.tensor(10)
b = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
c = a * b
print(c)

运行结果

tensor([[[10, 20],[30, 40]],[[50, 60],[70, 80]]])

解释:标量a被广播到与b的形状匹配。

示例5:不同形状的广播加法
a = torch.tensor([[1, 2], [3, 4], [5, 6]])
b = torch.tensor([10, 20])
c = a + b
print(c)

运行结果

tensor([[11, 22],[13, 24],[15, 26]])

解释a的形状是(3,2),b的形状是(2,)。b被广播到(3,2)。

张量的基本操作

示例1:基本运算
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = torch.tensor([[[2, 2], [2, 2]], [[2, 2], [2, 2]]])
c = a * b
print(c)

运行结果

tensor([[[ 2,  4],[ 6,  8]],[[10, 12],[14, 16]]])

解释:对ab中的每个元素进行乘法运算。

示例2:列表索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a[0]
print(b)

运行结果

tensor([[1, 2],[3, 4]])

解释:选择张量a的第0个二维子张量。

示例3:范围索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a[:, 0, :]
print(b)

运行结果

tensor([[1, 2],[5, 6]])

解释:选择张量a中所有的第0个二维子张量的所有元素。

示例4:布尔索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a > 4
c = a[b]
print(c)

运行结果

tensor([5, 6, 7, 8])

解释:选择张量a中所有大于4的元素。

示例5:多维索引
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a[1, 1, 1]
print(b)

运行结果

tensor(8)

解释:选择张量a的第二个三维子张量中的第二个二维子张量中的第二个元素。

示例6:形状操作(reshape)
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a.reshape(4, 2)
print(b)

运行结果

tensor([[1, 2],[3, 4],[5, 6],[7, 8]])

解释:将张量a重塑为形状为(4, 2)的张量。

示例7:形状操作(squeeze)
a = torch.tensor([[[1, 2]], [[3, 4]], [[5, 6]]])
b = a.squeeze()
print(b)

运行结果

tensor([[1, 2],[3, 4],[5, 6]])

解释:删除张量a中所有为1的维度。

示例8:形状操作(unsqueeze)
a = torch.tensor([[1, 2], [3, 4], [5, 6]])
b = a.unsqueeze(1)
print(b)

运行结果

tensor([[[1, 2]],[[3, 4]],[[5, 6]]])

解释:在张量a的第一维度增加一个维度。

示例9:形状操作(transpose)
a = torch.tensor([[[1, 2, 3], [4, 5, 6]]])
b = a.transpose(1, 2)
print(b)

运行结果

tensor([[[1, 4],[2, 5],[3, 6]]])

解释:交换张量a的第1维和第2维。

示例10:形状操作(permute)
a = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = a.permute(2, 0, 1)
print(b)

运行结果

tensor([[[1, 3],[5, 7]],[[2, 4],[6, 8]]])

解释:根据指定的顺序重新排列张量a的维度。

相关文章:

深度学习 - 张量的广播机制和复杂运算

张量的广播机制(Broadcasting)是一种处理不同形状张量进行数学运算的方式。通过广播机制,PyTorch可以自动扩展较小的张量,使其与较大的张量形状兼容,从而进行元素级的运算。广播机制遵循以下规则: 如果张量…...

【CSS】will-change 属性详解

目录 基本语法属性值常见用途will-change 如何用于优化动画效果示例: will-change 是一个 CSS 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化渲染性能,提前做一些准备工作,从而提高性能。 基本语法…...

linux安装mysql后,配置mysql,并连接navicat软件

Xshell连接登陆服务器 输入全局命令 mysql -u root -p 回车后,输入密码,不显示输入的密码 注意mysql服务状态,是否运行等 修改配置文件my.cnf,这里没找到就找my.ini,指定有一个是对的 find / -name my.cnf 接下…...

【学习笔记】Axios、Promise

TypeScript 1、Axios 1.1、概述 1.2、axios 的基本使用 1.3、axios 的请求方式及对应的 API 1.4、axios 请求的响应结果结构 1.5、axios 常用配置选项 1.6、axios.create() 1.7、拦截器 1.8、取消请求2、Promise 2.1、封装 fs 读…...

自然资源-关于加强规划实施监督管理的指导意见(浙江省自然资源厅学习借鉴)

自然资源-关于加强规划实施监督管理的指导意见(浙江省自然资源厅(征求意见稿)学习借鉴 以下为征求意见稿的内容,很多干活: 各市、县(市、区)自然资源主管部门: 为加强国土空间规划…...

408链表的创建和初始化

首先第一个头文件,定义结构体类型 typedef struct LNode {int data;struct LNode* next; }LNode,*LinkList; //可能作为第一次写c语言的小伙伴看不懂这一段typedef是如何定义的 //基本的解释如下所示 //typedef struct LNode LNode; //typedef struct LNode* LinkL…...

Python数据框/列表生成一列多个同样的值

例1:Python生成100个数字2 方法一: import numpy as np a np.random.randint(2,3,100) 方法二: a [2] list a * 100 #100个数字2的列表 例2:生成100个字符串棒 b 棒 list_b b * 100...

使用 MDC 实现日志链路跟踪,包教包会!

在微服务环境中,我们经常使用 Skywalking、Spring Cloud Sleut 等去实现整体请求链路的追踪,但是这个整体运维成本高,架构复杂,本次我们来使用 MDC 通过 Log 来实现一个轻量级的会话事务跟踪功能,需要的朋友可以参考一…...

【成都信息工程大学】只考程序设计!成都信息工程大学计算机考研考情分析!

成都信息工程大学(Chengdu University of Information Technology),简称“成信大”,由中国气象局和四川省人民政府共建,入选中国首批“卓越工程师教育培养计划”、“2011计划”、“中西部高校基础能力建设工程”、四川…...

将单列数据帧转换成多列数据帧

文章目录 1. 查看数据文件2. 读取数据文件得到单例数据帧3. 将单列数据帧转换成多列数据帧 在本次实战中,我们的目标是将存储在HDFS上的以逗号分隔的文本文件student.txt转换为结构化的Spark DataFrame。首先,使用spark.read.text读取文件,得…...

信息学奥赛初赛天天练-20-完善程序-vector数组参数引用传递、二分中值与二分边界应用的深度解析

PDF文档公众号回复关键字:20240605 1 2023 CSP-J 完善程序1 完善程序(单选题,每小题 3 分,共计 30 分) 原有长度为 n1,公差为1等升数列,将数列输到程序的数组时移除了一个元素,导致长度为 n 的开序数组…...

推荐系统学习 一

参考:一文看懂推荐系统:召回08:双塔模型——线上服务需要离线存物品向量、模型更新分为全量更新和增量更新_数据库全量更新和增量更新流程图-CSDN博客 一文看懂推荐系统:概要01:推荐系统的基本概念_王树森 小红书-CSD…...

分库分表详解

文章目录 分库分表概述分库分表详解分库分表的策略分库分表的注意事项常用的分库分表中间件mysql单表达到多少数据量需要分库分表数据库分库分表缺点分表要停服吗,不停服怎么做 分库分表概述 分库分表是数据库架构设计中的一种常见策略,尤其是在面对大规…...

【java前端课堂】04_类的继承

类的继承 在Java中,继承是面向对象编程的四大基本特性之一,它允许我们根据一个已有的类来定义一个新的类,这个新的类继承了原有类的特性(属性和方法),并可以添加新的特性或修改原有特性。这样,…...

React nginx配置,一个端口代理多个项目(转发后找不到CSS,JS及图片资源问题解决)

场景: nginx 配置负载均衡,甲方只提供一个端口,一个域名地址 方法: 一个端口一个域名匹配多个应用 方法一: 依靠设备浏览器区分: 使用UserAgent头来识别用户的客户端, CDN监测vary头的信息,如果内容不一致…...

Unity协程详解

什么是协程 协程,即Coroutine(协同程序),就是开启一段和主程序异步执行的逻辑处理,什么是异步执行,异步执行是指程序的执行并不是按照从上往下执行。如果我们学过c语言,我们应该知道&#xff0…...

【iOS】UI学习(二)

目录 前言UIViewContorllerUIViewContorller基础UIViewContorller使用 定时器和视图移动UISwitch控件UIProgressView和UISlider总结 前言 本篇博客是笔者在学习UI部分内容时的成果和遇到的一些问题,既是我自己的学习笔记,也希望对你有帮助~ …...

React路由(React笔记之五)

本文是结合实践中和学习技术文章总结出来的笔记(个人使用),如有雷同纯属正常((✿◠‿◠)) 喜欢的话点个赞,谢谢! React路由介绍 现在前端的项目一般都是SPA单页面应用,不再是以前多个页面多套HTML代码项目了,应用内的跳转不需要刷新页面就能完成页面跳转靠的就是路由系统 R…...

调用讯飞星火API实现图像生成

目录 1. 作者介绍2. 关于理论方面的知识介绍3. 关于实验过程的介绍,完整实验代码,测试结果3.1 API获取3.2 代码解析与运行结果3.2.1 完整代码3.2.2 运行结果 3.3 界面的编写(进阶) 4. 问题分析5. 参考链接 1. 作者介绍 刘来顺&am…...

reduce过滤递归符合条件的数据

图片展示 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head><…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

结构化文件管理实战:实现目录自动创建与归类

手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题&#xff0c;进而引发后续程序异常。使用工具进行标准化操作&#xff0c;能有效降低出错概率。 需要快速整理大量文件的技术用户而言&#xff0c;这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB&#xff0c;…...