elasticsearch (dsl)
正排索引 和 倒排索引
正排索引:通过id ,查询content
倒排索引:通过content,查询到符合的 ids
eg:
正排索引就是通过《静夜思》,找到整片文章。
倒排索引通过“明月”,找到《静夜思》 《望月怀古》《关山月》等
get 查询
索引的基本信息:
GET your_index/_mapping //跟看mysql表字段差不多
GET your_index/_alias //查看索引的别名
GET /_cat/health?v //查看集群状态
GET _cat/indices // 查看所有index
GET _cat/shards/your_index //查看指定索引的分片数,每个分片有主(p)副(r)分片
查询索引内容:
match_all
GET /you_index/_search
{"query":{"match_all": {}
}
bool
bool查询是一个非常强大且常用的复合查询,它允许你组合多个查询条件。bool 查询的核心概念包括以下四种子句:
- must: 子句必须匹配文档。类似于 SQL 中的 AND 操作符。
- filter: 子句必须匹配文档,但不影响评分。也就是说,它只过滤文档,但不参与评分计算。
- should: 子句可以匹配文档。如果在一个
bool查询中包含了多个should子句,则至少一个should子句必须匹配文档。类似于 SQL 中的 OR 操作符。 - must_not: 子句不能匹配文档。类似于 SQL 中的 NOT 操作符。
eg:
GET you_index/_search
{"query": {"bool": {"must": [{"bool": {"should": [{"term": {"name": {"value": "林俊凯","boost": 1}}},{"term": {"zh_name": {"value": "林俊凯","boost": 1}}}]}},{"bool": {"should": [{"range": {"fans_num": {"gte": "800"}}},{"terms": {"tag": [1010,1013]}}]}}]}},"sort": {"_score": {"order": "desc"},"score": {"order": "desc"}}
}
range
"range": {"fans_num": {"gte": 800,"lte":126334}}
gte:大于等于;lte小于等于
term
不分词,精准完全匹配查询
GET your_index_search/_search
{"query": {"term": {"name": {"value": "天空"}}}
}
terms
不分词,命中数组一个即可,不要求全部命中
GET your_index_search/_search
{"query": {"terms": {"tag": ["美食","购物"]}}
}
prefix
前缀匹配,不分词 ,精准匹配前半部分
GET your_index_search/_search
{"query": {"prefix": {"name_full": {"value": "林俊"}}}
}
林俊凯,林俊xxx都会命中
multi_match
会对query词进行分词
GET your_index_search/_search
{"query": {"bool": {"must": [{"multi_match": {"query": "北京景点","fields": ["name","name_full", "name_lower"],"analyzer":"ik","minimum_should_match":"3<80%"}}]}}
}
这里的 "minimum_should_match": "3<80%" 指定了如下规则:
-
如果分词数量小于或等于 3,则必须匹配所有分词。
-
如果分词数量大于 3,则至少匹配 80% 的分词。
这里的“analyzer”,是分词器,常见的有ik ik-smart standard mla
GET _analyze
{"analyzer":"mla","text":"北京景点"
}//结果为
{"tokens": [{"token": "北京","start_offset": 0,"end_offset": 2,"type": "CN_WORD","position": 0},{"token": "景点","start_offset": 2,"end_offset": 4,"type": "CN_WORD","position": 1}]
}
eg:“北京景点”分词为【北京,景点】,分词项为2,小于3,那么【北京】和【景点】都需要在field中匹配到。multi_match 查询的目的是在多个字段中搜索查询词中的词语,并且匹配规则会跨字段应用,比如 【北京】在name匹配到,【景点】在name_lower配到到,即匹配成功。
multi_phrase
会对query词进行分词(有的人会认为不会分词,❌),match_phrase要求严格,不仅要求,要能够匹配到分词后的所有单词,且分词后的单词顺序也要和命中结果中的顺序保持一致。
GET your_index_search/_search
{"query": {"bool": {"must": [{"match_phrase": {"name": "北京"}}]}}
}
name = “北京”能找到,“北 京” 或者“京北” 就找不到
可以设置slop,最大间隔,默认是0
match
会分词,没有multi_phrase那么严格,match要求不高,只要匹配到分词后的任意一个单词,就算查到结果 。
为什么match能找到,term查询不到呢?
首先,要看创建索引的时候mapping ,字段的类型。如果是type是keyword,不允许分词。
其次,查看字段类型发现是text,term查询的字段类型只能是keyword
"keyword_full": {"type": "text","fields": {"keyword": {"type": "keyword"}}},
相关文章:
elasticsearch (dsl)
正排索引 和 倒排索引 正排索引:通过id ,查询content 倒排索引:通过content,查询到符合的 ids eg: 正排索引就是通过《静夜思》,找到整片文章。 倒排索引通过“明月”,找到《静夜思》 《望…...
聊聊大模型微调训练全流程的思考
前言 参考现有的中文医疗模型:MedicalGPT、CareGPT等领域模型的训练流程,结合ChatGPT的训练流程,总结如下: 在预训练阶段,模型会从大量无标注文本数据集中学习领域/通用知识;其次使用{有监督微调}(SFT)优化…...
Python变量符号:深入探索与实用指南
Python变量符号:深入探索与实用指南 在Python编程的世界中,变量符号扮演着至关重要的角色。它们不仅是存储数据的容器,更是构建复杂逻辑和算法的基础。然而,对于初学者来说,Python的变量符号可能会带来一些困惑和挑战…...
实验八 页面置换模拟程序设计
网上找到的程序得到的答案经过手算验证是错的,所以自己实现了一个,具体实现看代码吧,多余的操作已经去掉了。 #include <stdio.h> #include <stdlib.h> #include <stdbool.h>#define VM_PAGE 7 /*假设每个页面可以存放10…...
Spring类加载机制揭秘:深度解析“卸载”阶段
1. 引言 在Spring框架中,类的加载和卸载是一个复杂但至关重要的过程。加载主要涉及将类的字节码加载到JVM中,创建对应的Class对象,并准备使其可用的过程。而卸载,则是指当一个类不再被需要时,将其从JVM中清除…...
Jupyter Notebook快速搭建
Jupyter Notebook why Jupyter Notebook Jupyter Notebook 是一个开源的 Web 应用程序,允许你创建和分享包含实时代码、方程、可视化和解释性文本的文档。其应用包括:数据清洗和转换、数值模拟、统计建模、数据可视化、机器学习等等。 Jupyter Notebo…...
Linux C语言:数组的定义和初始化
一、数组 1、定义 在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来,具有一定顺序关系的若干个变量的集合就是数组 。 2、特点 组成数组的各个变量称为数组的元素数组中各元素的数据类型要求相同元素在内存中是连…...
spring框架限制接口是否要登录过才能访问
1、引入spring 、spring boot依赖,这部分不再多说,正常开发spring boot项目就可以。 2、定义类,实现WebMvcConfigurer接口 package com.hmblogs.config;import com.hmblogs.config.web.interceptor.PortalTokenInterceptor; import org.spri…...
【全开源】废品回收垃圾回收小程序APP公众号源码PHP版本
🌟废品回收小程序:绿色生活的新助手🌱 一、引言 随着环保意识的逐渐提高,废品回收成为了我们日常生活中的重要一环。但是,如何更方便、高效地进行废品回收呢?今天,我要向大家推荐一款超级实用…...
勒索软件分析_目标文件扫描行为分析
BlackBasta首先通过 FindFirstVolumeW 与 FindNextVolumeW 实现系统中第一个卷的搜索和其余卷的遍历,之后通过 GetVolumePathNamesForVolumeNameW 检索指定卷的驱动器号和挂载的文件夹路径列表,然后通过 GetVolumeInformationW 获取关于指定卷的信息,具体代码如下所示。 Fin…...
2024050401-重学 Java 设计模式《实战代理模式》
重学 Java 设计模式:实战代理模式「模拟mybatis-spring中定义DAO接口,使用代理类方式操作数据库原理实现场景」 一、前言 难以跨越的瓶颈期,把你拿捏滴死死的! 编程开发学习过程中遇到的瓶颈期,往往是由于看不到前进…...
HTML跨年烟花
目录 写在前面 关于小编 HTML简介 程序设计 系列文章 写在后面 写在前面 学会了这个html烟花秀,跨年就不缺文案喽~ 关于小编 平易近人,慈眉善目,爱交朋友,舍己为人,和蔼可亲,能说会道,…...
微服务第二轮
学习文档 背景 由于每个微服务都有不同的地址或端口,入口不同 请求不同数据时要访问不同的入口,需要维护多个入口地址,麻烦 前端无法调用nacos,无法实时更新服务列表 单体架构时我们只需要完成一次用户登录、身份校验ÿ…...
线性模型-分类
一、线性判别分析LDA 线性判别分析是一种经典的线性学习方法,在二分类问题上最早是Fisher提出的,亦称为Fisher判别分析。 Fisher判别分析是一种用于降维和分类的统计方法,旨在找到可以最好区分不同类别的特征。它基于类内方差和类间方差的比…...
OpenAI前董事会成员称Sam Altman因 “ 向董事会撒谎 ” 而被解雇
据前 OpenAI 董事会成员称,据称 Altman 隐瞒了他对 OpenAI 创业基金的所有权。 更详细的内容请参考原文: https://cointelegraph.com/news/sam-altman-fired-openai-board-allegations 据一位前董事会成员称,Sam Altman 因涉嫌向董事会隐瞒…...
【启明智显分享】WIFI6开发板ZX6010:开源OpenWrt SDK,接受定制!
在数字化飞速发展的当下,网络速度和稳定性已成为各行各业不可或缺的关键因素。今天,我们为大家推荐一款基于IPQ6010的AX1800方案ZX6010 Wi-Fi6开发板,为您的网络世界注入强大动力。 一、超强硬件配置 ZX6010搭载IPQ6010四核ARM Cortex A53处…...
C语言能否使⽤ fflush( ) 函数清除多余的输⼊?
一、问题 在从终端输⼊数据时,很可能会输⼊多余的数据,那么能否使⽤ fflush( ) 函数清除呢? 二、解答 fflush( ) 函数只是⽤在⽂件以写的⽅式打开时,将缓冲区内容写⼊到⽂件。因此 fflush( ) 函数仅对输出流有效,对输…...
如何把试卷上的字去掉再打印?分享三种方法
如何把试卷上的字去掉再打印?随着科技的不断发展,现代教育和学习方式也在逐渐变革。在学习过程中,我们经常需要对试卷进行整理和分析,以便更好地掌握知识点和复习。然而,传统的试卷整理方法往往效率低下且容易出错。幸…...
Android开机动画压缩包zip,自制开机动画(基于Android10.0.0-r41)
文章目录 Android开机动画压缩包zip,自制开机动画1.Android加载压缩包原理2.自制开机动画 Android开机动画压缩包zip,自制开机动画 1.Android加载压缩包原理 这里有个md文件我们看下 核心部分, 首先要创建一个文件叫做desc.txt,这是规定的…...
手机站怎么推广
随着手机的普及和移动互联网的快速发展,越来越多的人开始使用手机进行在线购物、社交娱乐、阅读资讯等,同时也催生了越来越多的手机站的出现。但是,在海量的手机站中,要让自己的手机站脱颖而出,吸引更多用户访问和使用…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
