当前位置: 首页 > news >正文

Go微服务: 分布式Cap定理和Base理论

分布式中的Cap定理

  • CAP理论
    • C: 一致性,是站在分布式的角度,要么读取到数据,要么读取失败,比如数据库主从,同步时的时候加锁,同步完成才能读到同步的数据,同步完成,才返回数据给程序,这样就能解决数据不一致的问题,简单来说,就是保证数据最新
    • A: 可用性,任何客户端请求,都能得到响应式数据,不会出现响应错误,但可能不包含最新的写入数据,简单来说,就是保证数据不出错
    • P: 分区容错性,由于分布式系统都是通过网络通信的,网络是不可靠的,当任意数量的消息丢失或延迟到达的时候,系统仍然提供服务, 不会挂掉,简单说,就是一直运行,不管内部出现任何数据同步问题,强调的是不挂,但是要保证集群内有足够多的可用节点,所以一般要满足这个P条件
  • CAP理论只有两两相交不能同时满足三点,一般而言,分布式系统要满足P这个要求,就是不能挂掉,所以,要么是CP,要么是AP。而CA类型的就是单体应用,而非分布式应用

Base 理论

  • 这里先看一个场景:有两个人分别是a和b, a在A银行存钱,b在B银行存钱
  • 有一种情况是a给b转账10元,b查询时可能不会及时到账,系统还没有执行完,这样就存在一个中间状态,比如提示1个小时候再查询是否到账,这样就可以从业务层面解决问题
  • 还有一种情况a转了,系统执行了,但是遇到问题了,b没有收到,这时候,a仍然要保持原来的余额,那这时候通知a, 重新转一次账,即可。这一种是银行系统故障问题
  • 为了保持一致性,在高并发的场景中是不可接受的,可以主动提示用户,1小时之后再进行查询,这是一个中间状态,或者设置一个转账中的标识
  • 现在我们思考2个问题,在生产环境中是否可以牺牲可用性?也就是系统不能提供服务了; 是否可以牺牲一致性?也就是数据不一致的问题
  • 我们在分布式服务中就需要做一些取舍,根据自身情况的等级来选择
  • 现在举2个例子:单独的mysql是强一致性,分布式的集群是弱一致性,在强一致性的单独的系统中,基于事务可以回滚;分布式,比如A和B银行,两家银行,都是相互独立的,相互不会被控制,所以是弱一致性
  • 我们现在来看下Base理论的三要素
    • 1 ) 基本可用 Basically Available
    • 系统出现了不可预知的故障,但是能用,相比较正常系统而言会有响应时间上的损失和功能上的损失,比如从原来的 200ms响应到 500ms相应,再比如抢购活动中,抢不到提示稍后再试
    • 2 )软状态 Soft State
    • 也就是可以有一段时间不同步,什么是软状态呢?相对于原子性而言,要求多个节点的数据副本都是一致的,这是一种"硬状态"
    • 软状态是指允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同的节点的数据副本存在数据延时
    • 3 )最终一致性,Eventually Consistent, 简称 E, 最终数据一致就可以了,而不是时时保持强一致。上面说软状态,其实不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性,从而达到数据的最终一致性。这个时间期限取决于网络延时、系统负载、数据复制方案设计等因素。A到B银行的转账就是最终一致性的体现

相关文章:

Go微服务: 分布式Cap定理和Base理论

分布式中的Cap定理 CAP理论 C: 一致性,是站在分布式的角度,要么读取到数据,要么读取失败,比如数据库主从,同步时的时候加锁,同步完成才能读到同步的数据,同步完成,才返回数据给程序&…...

Mysql学习(四)——SQL通用语法之DQL

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 DQLDQL-语法基本查询条件查询聚合函数分组查询排序查询分页查询 DQL DQL数据查询语言,用来查询数据库中表的记录。 DQL-语法 select 字段列表 from 表…...

【ARFoundation自学05】人脸追踪(AR Face manager)实现

1. 修改摄像机朝向渲染方式-选中user 这个方式就会调用前置摄像头 2 创建 AR Session、XR Origin,然后在XR Origin上面添加组件 注意:XR Origin 老版本仍然叫 AR Session Origin 接下来在XR Origin上面添加AR Face Manager组件,如下图&am…...

Vulnhub-DC-2

靶机IP:192.168.20.135 网络有问题的可以看下搭建Vulnhub靶机网络问题(获取不到IP) kaliIP:192.168.20.128 扫描靶机端口及服务版本 发现开放了80和7744端口 并且是wordpress建站 dirsearch扫描目录 访问前端界面,发现存在重定向 在hosts文件中增加192.168.2…...

VNC server ubuntu20 配置

介绍 最近想使用实验室的4卡服务器跑一些深度学习实验,因为跑的是三维建图实验,需要配上可视化界面,本来自带的IPMI可以可视化,但分辨率固定在640*480,看起来很别扭,就捣鼓服务器远程可视化访问了两天&…...

c++--priority_queue和仿函数

目录 1.priority_queue 实现: 2.仿函数 priority_queue仿函数 实现代码 1.priority_queue 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的,其实就是个堆,默认是大根堆。…...

Harmony os Next——关系型数据库relationalStore.RdbStore的使用

Harmony os Next——关系型数据库relationalStore.RdbStore的使用 描述数据库的使用建表定义表信息创建数据库表 创建数据库操作对象增更新查询删数据库的初始化 描述 本文通过存储一个简单的用户信息到数据库中为例,进行阐述relationalStore.RdbStore数据库的CRUD…...

快手直播限流怎么办?

直播限流怎么办?这期把直播间限流的所有原因都讲得明明白白,如果你直播间昨天还播的好好的,今天突然间贴地飞行,按照这个思路框架去排查,准没问题。 第一件事情肯定是排查一下评分问题, 信用分、口碑分、…...

【MySQL】数据库入门基础

文章目录 一、数据库的概念1. 什么是数据库2. 主流数据库3. mysql和mysqld的区别 二、MySQL基本使用1. 安装MySQL服务器在 CentOS 上安装 MySQL 服务器在 Ubuntu 上安装 MySQL 服务器验证安装 2. 服务器管理启动服务器查看服务器连接服务器停止服务器重启服务器 3. 服务器&…...

cannot allocate memory in static TLS block

如果不是内存太小,那是不是因为glibc太旧呢? 考虑 glibc 2.22 以后的版本。 glibc-2.22 中加入了如下commit:f8aeae347377f3dfa8cbadde057adf1827fb1d44 https://sourceware.org/git/?pglibc.git;acommit;hf8aeae347377f3dfa8cbadde057adf1…...

Leetcode 654:最大二叉树

给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构建的 最大二叉树…...

uniapp小程序src引用服务器图片时全局变量与图片路径拼接

理论上&#xff0c;应该在main.js中定义一个全局变量&#xff0c;然后在页面的<image>标签上的是src直接使用即可 main.js 页面上 看上去挺靠谱的&#xff0c;实际上小程序后台会报一个错 很明显这种方式小程序是不认的&#xff0c;这就头疼了&#xff0c;还想过另外一个…...

比较PWM调光和无极调光

在比较PWM调光和无极调光哪种方式更节能时&#xff0c;需要综合考虑多个因素&#xff0c;如灯具类型、光源效率、调光范围以及使用场景等。 PWM调光系统通过调节LED驱动电流的占空比来实现LED亮度的调节&#xff0c;具有高精度、高稳定性、无闪烁现象以及适用范围广等优点。其节…...

【高校科研前沿】新疆生地所陈亚宁研究员团队在GeoSus发文:在1.5°C和2°C全球升温情景下,中亚地区暴露于极端降水的人口增加

目录 文章简介 1.研究内容 2.相关图件 3.文章引用 文章简介 论文名称&#xff1a;Increased population exposures to extreme precipitation in Central Asia under 1.5 ◦C and 2 ◦C global warming scenarios&#xff08;在1.5C和2C全球变暖情景下&#xff0c;中亚地区…...

使用 OKhttp3 实现 智普AI ChatGLM HTTP 调用(SSE、异步、同步)

SSE 调用 SSE&#xff08;Sever-Sent Event&#xff09;&#xff0c;就是浏览器向服务器发送一个HTTP请求&#xff0c;保持长连接&#xff0c;服务器不断单向地向浏览器推送“信息”&#xff08;message&#xff09;&#xff0c;这么做是为了节约网络资源&#xff0c;不用一直…...

智慧校园教学模式的崛起:优化学习体验

在当今数字化时代&#xff0c;智慧校园教学模式正在成为教育界的热门话题。随着科技的不断发展&#xff0c;传统的教学方式已经无法满足现代学生的需求。智慧校园教学模式以其灵活性、互动性和个性化的特点&#xff0c;正逐渐改变着教育的面貌。 首先&#xff0c;智慧校园教学模…...

ffmpeg视频编码原理和实战-(5)对编码过程进行封装并解决丢帧问题

头文件&#xff1a; xencode.h #pragma once #include <mutex> #include<vector> struct AVCodecContext; struct AVPacket; struct AVFrame; class XEncode { public:///// 创建编码上下文/// para codec_id 编码器ID号&#xff0c;对应ffmpeg/// return 编码上…...

halo进阶-主题插件使用

开始捣鼓捣鼓halo&#xff0c;换换主题&#xff0c;加个页面 可参考&#xff1a;Halo 文档 安装/更新主题 主题如同壁纸&#xff0c;萝卜青菜各有所爱&#xff0c;大家按需更换即可&#xff1b; Halo好在一键更换主题&#xff0c;炒鸡方便。 安装/更新插件 此插件还扩展了插件…...

资深开发推荐的IDEA 插件

开发如虎添翼 工欲善其事&#xff0c;必先利其器。想要提升编程开发效率&#xff0c;必须选择一款顺手的开发工具&#xff0c;插件不在多&#xff0c;而在精&#xff0c;作为从业10年的程序员&#xff0c;我目前用到这十几个插件&#xff0c;在平时开发&#xff0c;代码review…...

数学题目系列(一)|丑数|各位和|埃氏筛|欧拉筛

一.丑数 链接&#xff1a;丑数 分析&#xff1a; 丑数只有2&#xff0c;3&#xff0c;5这三个质因数&#xff0c;num 2a 3b 5c也就是一个丑数是由若干个2&#xff0c;3&#xff0c;5组成&#xff0c;那么丑数除以这若干个数字最后一定变为1 代码 class Solution {publi…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...