当前位置: 首页 > news >正文

动态规划(多重背包问题+二进制优化)

引言

多重背包,相对于01背包来说,多重背包是每个物品会有相应的个数,最多可以选那么多个,因而对于朴素多重背包,需要在01背包的基础上,再加一层物品的循环

朴素多重背包例题

P2347 [NOIP1996 提高组] 砝码称重

题意,就是说有六种砝码每种砝码有自己的个数,问你能达到的重量搭配是多少

题解:标准的多重背包,我们可以用dp[ j ]去表示 j 重量能否达到,如果能达到就是1,如果不能打达到就是0,最后遍历一遍dp数组去判断有多少个1即可

#include<bits/stdc++.h>
using namespace std;
int a[7];
int w[7]={0,1,2,3,5,10,20};
int dp[1050];int main()
{for(int i=1;i<=6;i++)cin>>a[i];dp[0]=1;for(int i=1;i<=6;i++){for(int j=1050;j>=0;j--){for(int k=0;k<=a[i];k++)//遍历第i个物品选的个数{if(dp[j]==1){dp[j+k*w[i]]=1;}}}}int sum=0;for(int i=1;i<=1000;i++)if(dp[i]!=0)sum++;cout<<"Total="<<sum;return 0;
}

 P6771 [USACO05MAR] Space Elevator 太空电梯

题意,就是说给你n中方块,每个方块有自己的高度,和最大搭建的限制(在某个高度以后不能用这种方块),还有方块的数量

思路:这是一个变式,我们需要将其组装成一个结构体,然后对a数组进行排序,从小到大进行排序,然后进行多重背包即可

#include<bits/stdc++.h>
using namespace std;
int n;
struct node{int h;int limit;int num;
}a[405];
int dp[40005];//能否达到高度为j,能达到为1,不能为0bool cmp(node a,node b)
{return a.limit<b.limit;
}int main()
{cin>>n;for(int i=1;i<=n;i++)cin>>a[i].h>>a[i].limit>>a[i].num;dp[0]=1;sort(a+1,a+1+n,cmp);for(int i=1;i<=n;i++){for(int j=a[i].limit;j>=0;j--){for(int k=0;k<=a[i].num&&j+k*a[i].h<=a[i].limit;k++){if(dp[j]==1){dp[j+k*a[i].h]=1;}}}}for(int i=a[n].limit;i>=0;i--){if(dp[i]==1){cout<<i;return 0;}}return 0;
} 

 P5365 [SNOI2017] 英雄联盟

 题意:有n个英雄,每个英雄有k个皮肤,对于一个英雄的所有皮肤都是一个价格c,但是我又想要m中搭配,正常的求法是算出m个搭配至少要多少钱,但是这题m的数据太大了,只能通过对于一定的钱,其搭配数是多少

思路:dp数组表示的是对于j元,总共有多少的搭配数,然后判断这个搭配数是否大于m从前向后遍历,找到第一个大于m种搭配的位置,那个下标就是最小花费

//英雄联盟 
//这题皮肤搭配数量太大了,肯定不能当数组,要换成j个q币能搞得最大皮肤搭配 
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
int num[135];
int w[135];
int dp[270005];
signed main()
{cin>>n>>m;int sum=0;//计算总金额 for(int i=1;i<=n;i++){cin>>num[i];}for(int i=1;i<=n;i++){cin>>w[i];sum+=num[i]*w[i];}dp[0]=1;for(int i=1;i<=n;i++){for(int j=sum;j>=0;j--){for(int k=0;k<=num[i]&&k*w[i]<=j;k++){dp[j]=max(dp[j],dp[j-k*w[i]]*k);}}}for(int i=1;i<=sum;i++){if(dp[i]>=m){cout<<i;return 0;}}return 0;
}

二进制优化

用到的是二进制拆分思想

比如说对于50这个数,我们用二进制拆分可以分为 1,2,4,8,16,19,这五个数,我们这五个数搭配可以组成50以内的所有自然数,所以我们二进制优化也是通过拆分每个物品的个数从而降低时间复杂度,从而形成完全的01背包问题

二进制优化例题

P1776 宝物筛选

一看这道题,如果用正常的多重背包,时间复杂度为100*40000*100000肯定会爆数据的,所以我们要用二进制优化,将时间复杂度变为4e6*log2(100000),这样就大大降低的时间的复杂度

将物品数量进行二进制拆分

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
int v[1405];
int w[1405];
int dp[40005];signed main()
{cin>>n>>m;int vv,ww,mm;int cnt=0;for(int i=1;i<=n;i++){cin>>vv>>ww>>mm;for(int j=1;j<=mm;j<<=1){cnt++;v[cnt]=j*vv;w[cnt]=j*ww;mm-=j;}if(mm){cnt++;v[cnt]=mm*vv;w[cnt]=mm*ww;}}for(int i=1;i<=cnt;i++){for(int j=m;j>=w[i];j--){dp[j]=max(dp[j],dp[j-w[i]]+v[i]);}}cout<<dp[m];return 0;
}

 

相关文章:

动态规划(多重背包问题+二进制优化)

引言 多重背包&#xff0c;相对于01背包来说&#xff0c;多重背包是每个物品会有相应的个数&#xff0c;最多可以选那么多个&#xff0c;因而对于朴素多重背包&#xff0c;需要在01背包的基础上&#xff0c;再加一层物品的循环 朴素多重背包例题 P2347 [NOIP1996 提高组] 砝…...

AI学习指南机器学习篇-逻辑回归正则化技术

AI学习指南机器学习篇-逻辑回归正则化技术 在机器学习领域&#xff0c;逻辑回归是一种常见的分类算法&#xff0c;它常用于处理二分类问题。在实际的应用中&#xff0c;为了提高模型的泛化能力和降低过拟合风险&#xff0c;逻辑回归算法通常会使用正则化技术。本文将介绍逻辑回…...

Django按照文章ID删除文章

重点是‘文章的ID’作为参数&#xff0c;如何在各个部分传递。 1、在视图函数部分 login_required def article_list(request):articles ArticlePost.objects.filter(authorrequest.user)context {articles: articles, }return render(request, article/column/article_lis…...

Java | Leetcode Java题解之第136题只出现一次的数字

题目&#xff1a; 题解&#xff1a; class Solution {public int singleNumber(int[] nums) {int single 0;for (int num : nums) {single ^ num;}return single;} }...

文件系统小册(FusePosixK8s csi)【1 Fuse】

文件系统小册&#xff08;Fuse&Posix&K8s csi&#xff09;【1 Fuse&#xff1a;用户空间的文件系统】 Fuse(filesystem in userspace),是一个用户空间的文件系统。通过fuse内核模块的支持&#xff0c;开发者只需要根据fuse提供的接口实现具体的文件操作就可以实现一个文…...

Bootstrap 环境安装

Bootstrap 环境安装 Bootstrap 是一个流行的前端框架,用于快速开发响应式和移动设备优先的网站。在开始使用 Bootstrap 之前,您需要安装相应的环境。本文将指导您如何安装 Bootstrap 环境。 1. 环境要求 在开始之前,请确保您的计算机上已安装以下软件: Node.js:Bootstr…...

GWT 与 Python App Engine 集成

将 Google Web Toolkit (GWT) 与 Python App Engine 集成可以实现强大的 Web 应用程序开发。这种集成允许你使用 GWT 的 Java 客户端技术构建丰富的用户界面&#xff0c;并将其与 Python 后端结合在一起&#xff0c;后端可以运行在 Google App Engine 上。 1、问题背景 在 Pyt…...

golang的函数为什么能有多个返回值?

在golang1.17之前&#xff0c;函数的参数和返回值都是放在函数栈里面的&#xff0c;比如函数A调用函数B&#xff0c;那么B的实参和返回值都是存放在函数A的栈里面&#xff0c;所以可以轻松的返回多个值。 其他的编程语言大都使用某个寄存器来存储函数的返回值。 但是从golang…...

一次 K8s 故障诊断:从 CPU 高负载到存储挂载泄露根源揭示

一、背景 现代软件部署中&#xff0c;容器技术已成为不可或缺的一环&#xff0c;在云计算和微服务架构中发挥着核心作用。随着容器化应用的普及&#xff0c;确保容器环境的可靠性成为了一个至关重要的任务。这就是容器SRE&#xff08;Site Reliability Engineering&#xff0c…...

python大作业:实现的简易股票简易系统(含源码、说明和运行截图)

实现一个简单的股票交易模拟系统。该系统将包括以下几个部分: 数据处理:从CSV文件中读取股票数据。 股票交易算法:实现一个简单的交易策略。 命令行界面(CLI):允许用户查看股票数据和进行交易。 数据持久化:将用户的交易记录和当前资金存储在数据库中。 为了简化这个示例…...

python-NLP常用数据集0.1.012

XNLI数据集 用户语言翻译和跨语言分类的语料库 官网地址&#xff1a;https://github.com/facebookresearch/XNLI下载地址&#xff1a;https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip注意事项&#xff1a;数据集有json格式的&#xff0c;和txt格式的数据格式 txt格式 la…...

【大事件】docker可能无法使用了

今天本想继续学习docker的命令&#xff0c;突然发现官方网站的文档页面打不开了。 难道是被墙了&#xff1f; 我用同事的翻了一下&#xff0c;能进&#xff0c;果然&#xff01; 正好手头的工作告一段落&#xff0c;将代码上传&#xff0c;然后通过jenkins将服务器自动部署到…...

探索Linux中的gzip命令:压缩与解压缩的艺术

探索Linux中的gzip命令&#xff1a;压缩与解压缩的艺术 在Linux世界中&#xff0c;文件压缩和解压缩是日常任务中不可或缺的一部分。gzip命令是这些任务中的佼佼者&#xff0c;它提供了高效的压缩和解压缩功能&#xff0c;广泛应用于各种场景。本文将带您深入了解gzip命令的工…...

Shell 输入/输出重定向

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…...

为什么RPC要比Http高效?

RPC和HTTP RPC&#xff08;Remote Procedure Call&#xff09;基于TCP连接通常比HTTP在性能上要高很多&#xff0c;原因如下&#xff1a; 1. 协议开销 HTTP开销&#xff1a; HTTP协议报文头部相对较大&#xff0c;包含大量的元数据&#xff08;如方法、URI、头字段等&#x…...

局域网电脑监控软件是如何监控到内网电脑的?

在信息化快速发展的今天&#xff0c;局域网电脑监控软件成为许多企业、学校和机构重要的实用工具。这些软件的主要功能在于对局域网内的电脑进行实时监控&#xff0c;以确保网络的安全、员工的工作效率以及合规性。那么&#xff0c;局域网电脑监控软件是如何做到对内网电脑进行…...

精妙无比的App UI 风格

精妙无比的App UI 风格...

SQL优化系列-快速学会分析SQL执行效率(下)

1 show profile 分析慢查询 有时需要确定 SQL 到底慢在哪个环节&#xff0c;此时 explain 可能不好确定。在 MySQL 数据库中&#xff0c;通过 profile&#xff0c;能够更清楚地了解 SQL 执行过程的资源使用情况&#xff0c;能让我们知道到底慢在哪个环节。 知识扩展&#xff1…...

交流非线性RCD负载的核心功能

非线性RCD负载是一种广泛应用于电力系统中的电子元件&#xff0c;主要用于保护电路免受过电压和欠电压的影响。它的核心功能主要包括以下几个方面&#xff1a; 1. 过电压保护&#xff1a;当电路中的电压超过设定值时&#xff0c;非线性RCD负载会自动断开电路&#xff0c;防止电…...

英语学习笔记31——Where‘s Sally?

Where’s Sally? Sally在哪&#xff1f; 词汇 Vocabulary garden /ˈɡɑːrdn/ n. 花园&#xff0c;院子&#xff08;属于私人&#xff09; 区别&#xff1a;park n. 公园&#xff08;公共的&#xff09; 例句&#xff1a;我的花园非常大。    My garden is very big. 搭…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...

Java中HashMap底层原理深度解析:从数据结构到红黑树优化

一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一&#xff0c;是基于哈希表的Map接口非同步实现。它允许使用null键和null值&#xff08;但只能有一个null键&#xff09;&#xff0c;并且不保证映射顺序的恒久不变。与Hashtable相比&#xff0c;Hash…...

STM32 低功耗设计全攻略:PWR 模块原理 + 睡眠 / 停止 / 待机模式实战(串口 + 红外 + RTC 应用全解析)

文章目录 PWRPWR&#xff08;电源控制模块&#xff09;核心功能 电源框图上电复位和掉电复位可编程电压监测器低功耗模式模式选择睡眠模式停止模式待机模式 修改主频一、准备工作二、修改主频的核心步骤&#xff1a;宏定义配置三、程序流程&#xff1a;时钟配置函数解析四、注意…...