当前位置: 首页 > news >正文

[每周一更]-(第99期):MySQL的索引为什么用B+树?

在这里插入图片描述

文章目录

    • B树与B+树的基本概念
      • B树(Balanced Tree)
      • B+树(B-Plus Tree)
      • 对比
    • 为什么MySQL选择B+树
      • 1. **磁盘I/O效率**
      • 2. **更稳定的查询性能**
      • 3. **更高的空间利用率**
      • 4. **并发控制**
    • 其他树结构的比较
    • 参考

索引是一种 数据结构,用于帮助我们在大量数据中快速定位到我们想要查找的数据。MySQL索引有三类:B+树索引、Hash索引、全文索引

在数据库系统中,索引是提高数据检索效率的关键工具。而在MySQL中,B+树索引是最常用的一种索引结构。理解为什么MySQL选择使用B+树而不是B树或其他树结构,首先需要深入了解B+树和B树的特性及其在数据库检索中的表现。

B树与B+树的基本概念

B树(Balanced Tree)

B树是一种自平衡的多叉树数据结构,其中每个节点可以包含多个子节点和键。B树的每个节点都包含键和子节点指针,叶子节点不需要保持在同一层。

B树的特性包括:

  1. 每个节点包含多个键:每个节点至少包含 ⌈m/2⌉−1个键,至多包含 m−1 个键,m 为B树的阶数。
  2. 所有叶子节点在相同深度:树的所有叶子节点处于同一深度。
  3. 平衡性:插入和删除操作保持树的平衡。

B+树(B-Plus Tree)

B+树是B树的一种变体,具有以下特点:

  1. 叶子节点链表:所有叶子节点通过链表相连,形成一个有序链表。
  2. 非叶子节点只存储键:非叶子节点不存储数据,只存储键和子节点指针,数据仅存储在叶子节点中。
  3. 更高的节点分支因子:因为非叶子节点只存储键,B+树相对于同阶的B树可以存储更多的键,从而减少树的高度。

对比

特性B树B+树
节点存储键和数据内部节点存储键,叶子节点存储数据
键的数量⌈m/2⌉−1到 m−1⌈m/2⌉−1到 m−1
子节点指针数量⌈m/2⌉ 到 m⌈m/2⌉ 到 m
数据存储位置内部节点和叶子节点仅在叶子节点
叶子节点链表不存在存在(叶子节点通过链表连接)
查询效率O(logmN),从根节点到叶子节点O(logmN),从根节点到叶子节点
插入/删除操作相对复杂,需要调整节点相对复杂,需要调整叶子节点链表和节点
范围查询效率较差,需要遍历多个节点优秀,叶子节点通过链表有序连接
顺序访问较差,需要中序遍历树优秀,通过链表遍历叶子节点
空间利用率较高较高,叶子节点存储更多数据
适用场景频繁插入、删除操作高效范围查询、顺序访问、数据库索引

B树

  • 适用于需要频繁插入和删除操作的场景。
  • 数据既存储在内部节点也存储在叶子节点。
  • 查询和更新操作效率较高,但范围查询和顺序访问效率较低。

B+树

  • 适用于需要高效范围查询和顺序访问的场景。
  • 数据仅存储在叶子节点,内部节点只存储键。
  • 叶子节点通过链表连接,提高了范围查询和顺序访问的效率。

为什么MySQL选择B+树

1. 磁盘I/O效率

数据库检索的效率很大程度上取决于磁盘I/O操作的效率。B+树的结构有利于减少磁盘I/O操作:

  • 叶子节点链表:B+树的所有叶子节点通过链表相连,支持顺序访问。当进行范围查询时,只需在链表中遍历叶子节点即可,大大提高了范围查询的效率。
  • 更高的节点分支因子:由于非叶子节点只存储键,B+树可以在同样大小的节点中存储更多的键和子节点指针,从而减少树的高度。更少的高度意味着在检索时需要更少的磁盘I/O操作。

2. 更稳定的查询性能

B+树的查询性能更加稳定,尤其是在范围查询和排序操作中表现突出:

  • 范围查询:B+树的叶子节点通过链表相连,进行范围查询时只需遍历链表,性能较为稳定。
  • 排序:B+树的叶子节点本身是有序的,支持高效的排序操作。

3. 更高的空间利用率

B+树的空间利用率更高,因为它将数据仅存储在叶子节点中,而非叶子节点只存储键和指针。相比之下,B树的每个节点都存储数据和指针,导致空间利用率较低。

4. 并发控制

B+树的结构有助于提高并发控制能力:

  • 分裂和合并操作:在插入和删除操作时,B+树的分裂和合并操作相对简单且对树的结构影响较小,这有助于提高并发操作的性能和稳定性。

与 B 树相比,B+树具有以下优点:

  • 更矮胖的树: B+树的非叶子结点不存储数据,因此可以存储更多的索引,从而使树更加矮胖。这使得查询数据时需要访问的树的层数更少,从而提高查询效率。
  • 更快的范围查询: B+树的叶子结点按关键字顺序存储,并且相邻的叶子结点之间有指针相连,因此可以很有效地支持范围查询。

B树与B+树比较

  • B+树层级更少,查找更快
  • B+树查询速度稳定:由于B+树所有数据都存储在叶子节点,所以查询任意数据的次数都是树的高度h
  • B+树有利于范围查找
  • B+树全节点遍历更快:所有叶子节点构成链表,全节点扫描,只需遍历这个链表即可
  • B树优点:如果在B树中查找的数据离根节点近,由于B树节点中保存有数据,那么这时查询速度比B+树快。

其他树结构的比较

虽然B+树在数据库索引中表现优异,但了解其他树结构的优缺点也有助于全面理解数据库索引的选择:

  • AVL树:AVL树是一种高度平衡的二叉搜索树,每次插入和删除操作都会导致旋转,以保持平衡。虽然AVL树的查找效率高,但由于频繁的旋转操作,其插入和删除效率较低,不适合频繁更新的数据库环境。
  • 红黑树:红黑树是一种自平衡的二叉搜索树,通过颜色标记节点并进行旋转操作来保持平衡。红黑树的插入和删除效率高于AVL树,但由于其二叉结构,相对于多叉树的B+树,磁盘I/O效率较低。

各种树解决的问题以及面临的新问题

  • 二叉查找树(BST):解决了排序的基本问题,但是由于无法保证平衡,可能退化为链表;

  • 平衡二叉树(AVL):通过旋转解决了平衡的问题,但是旋转操作效率太低;

  • 红黑树:通过舍弃严格的平衡和引入红黑节点,解决了AVL旋转效率过低的问题,但是在磁盘等场景下,树仍然太高,IO次数太多;

  • B树:通过将二叉树改为多路平衡查找树,解决了树过高的问题;

  • B+树:在B树的基础上,将非叶节点改造为不存储数据的纯索引节点,进一步降低了树的高度;此外将叶节点使用指针连接成链表,范围查询更加高效。

MySQL选择B+树作为索引结构是基于其在磁盘I/O效率、查询性能、空间利用率和并发控制等方面的优势。B+树通过将数据存储在叶子节点并使用链表连接叶子节点,实现了高效的范围查询和排序操作,同时减少了磁盘I/O操作的次数,提供了稳定的查询性能。这些特点使得B+树成为MySQL数据库索引的首选结构。

参考

  • 知乎 - MySQL 为什么使用 B+ 树来作索引?
  • Github - B树和B+树详解

相关文章:

[每周一更]-(第99期):MySQL的索引为什么用B+树?

文章目录 B树与B树的基本概念B树(Balanced Tree)B树(B-Plus Tree)对比 为什么MySQL选择B树1. **磁盘I/O效率**2. **更稳定的查询性能**3. **更高的空间利用率**4. **并发控制** 其他树结构的比较参考 索引是一种 数据结构&#x…...

详解MySQL的MVCC机制

多版本并发控制(MVCC,Multi-Version Concurrency Control)是MySQL InnoDB存储引擎用于实现事务隔离和提高并发性能的一种机制。MVCC通过在同一数据的多个版本之间进行管理,允许读写操作并发进行,从而避免了传统锁机制带…...

docker部署skywalking

skywalking版本下载 1:拉取skywalking的oap镜像(可以选择自己的版本,最好与ui,agent版本一致) docker pull apache/skywalking-oap-server:9.5.02:启动oap docker run -d -p 11800:11800 -p 12800:12800 --name sw_oap apache/…...

Mac 使用Docker安装Elasticsearch、Kibana 、ik分词器、head

安装ElasticSearch 通过docker安装es docker pull elasticsearch:7.8.1 在本地创建elasticsearch.yml文件 mkdir /Users/ky/Documents/learn/es/elasticsearch.yml 编辑yml文件内容 http: host: 0.0.0.0 xpack.security.enabled: false xpack.security.enrollment.enabled: t…...

【Webpack4打包机制原理解析】

webpack是一个打包模块化 JavaScript 的工具,在 webpack里一切文件皆模块,通过 Loader 转换文件,通过 Plugin 注入钩子,最后输出由多个模块组合成的文件。webpack专注于构建模块化项目。 # 简单版打包模型步骤 我们先从简单的入手…...

如何提高接口响应速度

在非大数据(几万以上记录)的情况下,影响接口响应速度的因素中最大的是查询数据库的次数,其次才是数组遍历和简单数据处理(如根据已有字段增加新的属性,或计算值)。 一般一次数据库查询需要50毫秒…...

项目敏感配置信息加固

概述 引入jasypt做密码等敏感配置信息的加固 项目集成依赖 pom.xml引入jasypt-spring-boot-starter依赖 <dependency><groupId>com.github.ulisesbocchio</groupId><artifactId>jasypt-spring-boot-starter</artifactId><version>3.0.…...

HCIA-AI课程大纲

该阶段详细介绍各个机器学习范式方法&#xff0c;涵盖有监督、无监督、半监督、强化学习&#xff0c;以及深度学习算法基础&#xff0c;共计 72 课时。 第一节&#xff1a;华为云 ModelArts 云服务开发环境搭建 - &#xff08;2 课时&#xff09; - 华为云 ModelArts 云服务简…...

keil program algorithm 出错

前段时间 在 调试下载算法时&#xff0c;遇到一个奇怪的问题 就是 加载下载算法后&#xff0c; 下载算法的RAM空间 大小不能修改为 单片机的最大RAM&#xff0c;只能改到最大4KB的空间大小, 再大就报错 刚开始报错 一直不知道原因&#xff0c;走了很多弯路&#xff0c; 到最…...

SITNE24V2BNQ-3/TR一种瞬态电压抑制器,对标PESD1CAN

SITNE24V2BNQ是一种瞬态电压抑制器&#xff0c;设计用于保护两个汽车控制器区域 网络(CAN)母线不受ESD等瞬变造成的损坏。 SITNE24V2BNQ采用SOT-23封装。标准产品不含铅和卤素。 产品参数 方向&#xff1a;双向通道数&#xff1a;2VRWM(V)(Max)&#xff1a;24IPP8/20μS(A)(M…...

Vue3【四】使用Vue2的写法写一个新的组件子组件和根组件

Vue3【四】使用Vue2的写法写一个新的组件 Vue3【四】使用Vue2的写法写一个新的组件 Vue3是向下兼容的&#xff0c;所有可以使用Vue的选项式写法 运行截图 目录结构 文件源码 App.vue <template><div class"app"><h1>你好世界! 我是App根组件<…...

指标体系建设10大坑

在企业经营和运营管理中&#xff0c;指标体系的建设至关重要&#xff0c;它在一定程度上是反映业务的问题状况&#xff0c;影响决策者的决策。但是&#xff0c;在指标体系的建设过程中&#xff0c;常常会存在一些不容忽视的“坑”&#xff0c;今天做个总结&#xff0c;以下为个…...

ubuntu 20.04上docker 使用gpu

要在Docker容器中使用GPU,你需要确保系统上已经安装了正确的NVIDIA驱动程序,并且安装了NVIDIA Container Toolkit。以下是详细的步骤: 1. 安装NVIDIA驱动程序 确保你的系统上已经安装了适当版本的NVIDIA驱动程序。你可以通过运行以下命令来检查驱动程序是否正确安装: nv…...

短剧系统投流版开发,为运营公司投流业务赋能

短剧系统投流版开发是一项复杂的任务&#xff0c;旨在为运营公司的投流业务提供强大的技术支持和赋能。以下是一些关键步骤和考虑因素&#xff0c;以确保短剧系统投流版的成功开发&#xff1a; 一、明确业务需求与目标 首先&#xff0c;需要深入了解运营公司的业务需求、目标…...

入坑必看的几个嵌入式方向热点问题

我们为何要学嵌入式&#xff1f;---需求、薪资、长期发展 嵌入式是成为下一个JAVA吗&#xff1f; 互联网开发和嵌入式开发怎么选&#xff1f; 高薪热门就业方向有哪些&#xff1f; 刚入门&#xff0c;刚毕业&#xff0c;学完没有“工作经验”&#xff0c;能有人要吗&#x…...

电能表如何与智能家居进行有效的融合

随着智能家居技术的不断发展&#xff0c;越来越多的家庭开始使用智能家电、智能照明、智能安防等智能设备&#xff0c;以实现更加便捷、舒适、安全的居住环境。而电能表作为电力系统中不可或缺的一环&#xff0c;不仅承担着计量电能的重要职责&#xff0c;还可以为智能家居系统…...

jmeter多用户登录并退出教程

有时候为了模拟更真实的场景&#xff0c;在项目中需要多用户登录并退出操作&#xff0c;大致参考如下 多用户登录前面已经实现&#xff1a;参考博文 多用户登录并退出jmx文件&#xff1a;百度网盘 提取码&#xff1a;0000 一、多用户退出操作 添加一个setUp线程组&#xff0…...

阿里云ECS实例镜像本地取证

更新时间&#xff1a;2024年03月21日10:09:37 1. 说明 很多非法案件中&#xff0c;服务器是直接搭建在阿里云上的&#xff0c;比如我们在拿到OSSKey之后&#xff08;技术方法、其它方法等&#xff09;&#xff0c;可以将涉案服务器镜像导出&#xff0c;在本地进行取证分析。 …...

不要硬来!班组管理有“巧思”

班组管理&#xff0c;听起来似乎是一个充满“硬气”的词汇&#xff0c;让人联想到严肃、刻板的制度和规矩。然而&#xff0c;在实际操作中&#xff0c;我们却需要运用一些“巧思”&#xff0c;以柔克刚&#xff0c;让班组管理既有力度又不失温度。 在班组管理中&#xff0c;我们…...

[原创][Delphi多线程]使用TMonitor和TQueue配合实现TThreadedQueue的经典使用案例.

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XX QQ: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delph…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...