AIGC笔记--Stable Diffusion源码剖析之UNetModel
1--前言
以论文《High-Resolution Image Synthesis with Latent Diffusion Models》 开源的项目为例,剖析Stable Diffusion经典组成部分,巩固学习加深印象。
2--UNetModel
一个可以debug的小demo:SD_UNet
以文生图为例,剖析UNetModel核心组成模块。
2-1--Forward总揽
提供的文生图Demo中,实际传入的参数只有x、timesteps和context三个,其中:
x 表示随机初始化的噪声Tensor(shape: [B*2, 4, 64, 64],*2表示使用Classifier-Free Diffusion Guidance)。
timesteps 表示去噪过程中每一轮传入的timestep(shape: [B*2])。
context表示经过CLIP编码后对应的文本Prompt(shape: [B*2, 77, 768])。
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):"""Apply the model to an input batch.:param x: an [N x C x ...] Tensor of inputs.:param timesteps: a 1-D batch of timesteps.:param context: conditioning plugged in via crossattn:param y: an [N] Tensor of labels, if class-conditional.:return: an [N x C x ...] Tensor of outputs."""assert (y is not None) == (self.num_classes is not None), "must specify y if and only if the model is class-conditional"hs = []t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # Create sinusoidal timestep embeddings.emb = self.time_embed(t_emb) # MLPif self.num_classes is not None:assert y.shape == (x.shape[0],)emb = emb + self.label_emb(y)h = x.type(self.dtype)for module in self.input_blocks:h = module(h, emb, context)hs.append(h)h = self.middle_block(h, emb, context)for module in self.output_blocks:h = th.cat([h, hs.pop()], dim=1)h = module(h, emb, context)h = h.type(x.dtype)if self.predict_codebook_ids:return self.id_predictor(h)else:return self.out(h)
2-2--timestep embedding生成
使用函数 timestep_embedding() 和 self.time_embed() 对传入的timestep进行位置编码,生成sinusoidal timestep embeddings。
其中 timestep_embedding() 函数定义如下,而self.time_embed()是一个MLP函数。
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):"""Create sinusoidal timestep embeddings.:param timesteps: a 1-D Tensor of N indices, one per batch element.These may be fractional.:param dim: the dimension of the output.:param max_period: controls the minimum frequency of the embeddings.:return: an [N x dim] Tensor of positional embeddings."""if not repeat_only:half = dim // 2freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device)args = timesteps[:, None].float() * freqs[None]embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)if dim % 2:embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)else:embedding = repeat(timesteps, 'b -> b d', d=dim)return embedding
self.time_embed = nn.Sequential(linear(model_channels, time_embed_dim),nn.SiLU(),linear(time_embed_dim, time_embed_dim),
)
2-3--self.input_blocks下采样
在 Forward() 中,使用 self.input_blocks 将输入噪声进行分辨率下采样,经过下采样具体维度变化为:[B*2, 4, 64, 64] > [B*2, 1280, 8, 8];
下采样模块共有12个 module,其组成如下:
ModuleList((0): TimestepEmbedSequential((0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(1-2): 2 x TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))))(3): TimestepEmbedSequential((0): Downsample((op): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))(4): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=640, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1)))(1): SpatialTransformer((norm): GroupNorm(32, 640, eps=1e-06, affine=True)(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=640, out_features=640, bias=False)(to_v): Linear(in_features=640, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=640, out_features=5120, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=2560, out_features=640, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=768, out_features=640, bias=False)(to_v): Linear(in_features=768, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))))(5): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=640, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 640, eps=1e-06, affine=True)(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=640, out_features=640, bias=False)(to_v): Linear(in_features=640, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=640, out_features=5120, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=2560, out_features=640, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=768, out_features=640, bias=False)(to_v): Linear(in_features=768, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))))(6): TimestepEmbedSequential((0): Downsample((op): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))(7): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1)))(1): SpatialTransformer((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=1280, out_features=1280, bias=False)(to_v): Linear(in_features=1280, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=5120, out_features=1280, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=768, out_features=1280, bias=False)(to_v): Linear(in_features=768, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(8): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=1280, out_features=1280, bias=False)(to_v): Linear(in_features=1280, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=5120, out_features=1280, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=768, out_features=1280, bias=False)(to_v): Linear(in_features=768, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(9): TimestepEmbedSequential((0): Downsample((op): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))(10-11): 2 x TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity()))
)
12个 module 都使用了 TimestepEmbedSequential 类进行封装,根据不同的网络层,将输入噪声x与timestep embedding和prompt context进行运算。
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):"""A sequential module that passes timestep embeddings to the children thatsupport it as an extra input."""def forward(self, x, emb, context=None):for layer in self:if isinstance(layer, TimestepBlock):x = layer(x, emb)elif isinstance(layer, SpatialTransformer):x = layer(x, context)else:x = layer(x)return x
2-3-1--Module0
Module 0 是一个2D卷积层,主要对输入噪声进行特征提取;
# init 初始化
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
)# 打印 self.input_blocks[0]
TimestepEmbedSequential((0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
2-3-2--Module1和Module2
Module1和Module2的结构相同,都由一个ResBlock和一个SpatialTransformer组成;
# init 初始化
for _ in range(num_res_blocks):layers = [ResBlock(ch,time_embed_dim,dropout,out_channels=mult * model_channels,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,)]ch = mult * model_channelsif ds in attention_resolutions:if num_head_channels == -1:dim_head = ch // num_headselse:num_heads = ch // num_head_channelsdim_head = num_head_channelsif legacy:#num_heads = 1dim_head = ch // num_heads if use_spatial_transformer else num_head_channelslayers.append(AttentionBlock(ch,use_checkpoint=use_checkpoint,num_heads=num_heads,num_head_channels=dim_head,use_new_attention_order=use_new_attention_order,) if not use_spatial_transformer else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim))self.input_blocks.append(TimestepEmbedSequential(*layers))self._feature_size += chinput_block_chans.append(ch)# 打印 self.input_blocks[1]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1)))
)# 打印 self.input_blocks[2]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1)))
)
2-3-3--Module3
Module3是一个下采样2D卷积层。
# init 初始化
if level != len(channel_mult) - 1:out_ch = chself.input_blocks.append(TimestepEmbedSequential(ResBlock(ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,down=True,)if resblock_updownelse Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)))# 打印 self.input_blocks[3]
TimestepEmbedSequential((0): Downsample((op): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)))
)
2-3-4--Module4、Module5、Module7和Module8
与Module1和Module2的结构相同,都由一个ResBlock和一个SpatialTransformer组成,只有特征维度上的区别;
2-3-4--Module6和Module9
与Module3的结构相同,是一个下采样2D卷积层。
2-3--5--Module10和Module11
Module10和Module12的结构相同,只由一个ResBlock组成。
# 打印 self.input_blocks[10]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())
)# 打印 self.input_blocks[11]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())
)
相关文章:
AIGC笔记--Stable Diffusion源码剖析之UNetModel
1--前言 以论文《High-Resolution Image Synthesis with Latent Diffusion Models》 开源的项目为例,剖析Stable Diffusion经典组成部分,巩固学习加深印象。 2--UNetModel 一个可以debug的小demo:SD_UNet 以文生图为例&#…...
Linux文件系统与日志分析
目录 inode block 链接 文件修复 实验步骤 针对ext文件系统恢复删除文件 针对xfs文件系统恢复删除文件 日志 日志级别 rsyslogd服务 日志目录 messages日志文件(系统日志) 集中管理日志 - 实验 1.环境配置 1.1 1.2 1.3 1.4 1.5 2.远…...
【SkyWalking】使用PostgreSQL做存储K8s部署
拉取镜像 docker pull apache/skywalking-ui:10.0.1 docker tag apache/skywalking-ui:10.0.1 xxx/xxx/skywalking-ui:10.0.1 docker push xxx/xxx/skywalking-ui:10.0.1docker pull apache/skywalking-oap-server:10.0.1 docker tag apache/skywalking-oap-server:10.0.1 xxx…...
详解大模型微调数据集构建方法(持续更新)
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算…...
自制植物大战僵尸:HTML5与JavaScript实现的简单游戏
引言 在本文中,我们将一起探索如何使用HTML5和JavaScript来创建一个简单的植物大战僵尸游戏。这不仅是一项有趣的编程挑战,也是学习游戏开发基础的绝佳机会。 什么是植物大战僵尸? 植物大战僵尸是一款流行的策略塔防游戏,玩家需…...
Istio_1.17.8安装
项目背景 按照istio官网的命令一路安装下来,安装好的istio版本为目前的最新版本,1.22.0。而我的k8s集群的版本并不支持istio_1.22的版本,导致ingress-gate网关安装不上,再仔细查看istio的发布文档,如果用istio_1.22版本…...
[数据集][目标检测]室内积水检测数据集VOC+YOLO格式761张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):761 标注数量(xml文件个数):761 标注数量(txt文件个数):761 标注类别…...
17_Vue高级监听器生命周期Vue组件组件通信
文章目录 1. 数据监听器watch2. Vue生命周期3. Vue组件4. Vue组件通信Appendix 1. 数据监听器watch 首先watch需要单独引 import {watch} from vuewatch函数监听ref响应式数据 watch(监听的内容,监听行为)监听行为默认为(newValue,oldValue) let firstname ref…...
【ROS使用记录】—— ros使用过程中的rosbag录制播放和ros话题信息相关的指令与操作记录
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、rosbag的介绍二、rosbag的在线和离线录制三、rosbag的播放相关的指令四、其他rosbag和ros话题相关的指令总结 前言 rosbag是ROS(机器人操作系统…...
Laravel 富文本内容
Laravel 获取富文本的纯文本内容-CSDN博客 Laravel 富文本内容里面的图片添加前缀URL-CSDN博客 Laravel 富文本图片的style样式删除-CSDN博客. Laravel 获取富文本中的所有图片-CSDN博客 富文本字体font-famly删除 $data preg_replace(/(<[^>])style["\][^"…...
Spark Python环境搭建与优化:深入剖析四个方面、五个方面、六个方面及七个关键要点
Spark Python环境搭建与优化:深入剖析四个方面、五个方面、六个方面及七个关键要点 在大数据处理领域,Apache Spark凭借其出色的性能和灵活性备受瞩目。而要在Python中利用Spark的强大功能,首先需要搭建一个稳定且高效的Spark Python环境。本…...
【微信小程序开发】小程序中的上滑加载更多,下拉刷新是如何实现的?
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...
从 Android 恢复已删除的备份录
本文介绍了几种在 Android 上恢复丢失和删除的短信的方法。这些方法都不能保证一定成功,但您可能能够恢复一些短信或其中存储的文件。 首先要尝试什么 首先,尝试保留数据。如果你刚刚删除了信息,请立即将手机置于飞行模式,方法是…...
如何使用Python中的random模块生成随机数
在Python中,random模块提供了多种用于生成随机数的函数。以下是一些基本示例: 生成随机整数: 使用random.randint(a, b)函数生成一个介于a和b之间的随机整数(包括a和b)。 python复制代码 import random random_int …...
AI大数据处理与分析实战--体育问卷分析
AI大数据处理与分析实战–体育问卷分析 前言:前一段时间接了一个需求,使用AI进行数据分析与处理,遂整理了一下大致过程和大致简要结果(更详细就不方便放了)。 文章目录 AI大数据处理与分析实战--体育问卷分析一、数据…...
C++第二十五弹---从零开始模拟STL中的list(下)
✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】 目录 1、函数补充 2、迭代器完善 3、const迭代器 总结 1、函数补充 拷贝构造 思路: 先构造一个头结点,然后将 lt 类中的元…...
STM32/keil把多个c文件编译为静态库lib
把常用的、不经常修改的代码库编译成lib以后,可以加快整个工程的编译速度。 一个常见的应用场景就是,把ST的标准库或HAL库等编译成lib,这样以后再编译整个工程时,就无需再次编译他们了,可以节省编译时间。当然&#x…...
L45---506.相对名次(java)--排序
1.题目描述 2.知识点 (1)String.join(" ", words) 是 Java 中的一个语法,用于将数组或集合中的元素连接成一个单独的字符串,连接时使用指定的分隔符。这里的 " " 是作为分隔符使用的一个空格字符串。 Strin…...
跨网段路由
跨网段路由通常是指在网络中配置路由,以允许不同子网之间的通信。要设置跨网段的永久路由,取决于你是在操作路由器、交换机这样的网络设备,还是在配置个人计算机(如Windows或Linux系统)。下面是两种常见情况下的简要指…...
HO-3D 数据集
// 由于非刚体的追踪比较困难,所以看看刚体数据集 HOnnotate: A method for 3D Annotation of Hand and Object Poses // cvpr20https://arxiv.org/abs/1907.01481 https://github.com/shreyashampali/ho3d https://paperswithcode.com/paper/ho-3d-a-mult…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
