当前位置: 首页 > news >正文

Tensorflow音频分类

tensorflow

https://www.tensorflow.org/lite/examples/audio_classification/overview?hl=zh-cn

官方有移动端demo

前端不会  就只能找找有没有java支持

注意版本

注意JDK版本

package com.example.demo17.controller;import org.tensorflow.*;
import org.tensorflow.ndarray.*;
import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray;
import org.tensorflow.proto.framework.DataType;
import org.tensorflow.proto.framework.MetaGraphDef;
import org.tensorflow.proto.framework.SignatureDef;
import org.tensorflow.proto.framework.TensorInfo;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TInt64;import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.UnsupportedAudioFileException;
import javax.xml.transform.Result;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;public class Test {private static FloatNdArray t1() {
//        String audioFilePath = "D:\\ai\\cat.wav";String audioFilePath = "C:\\Users\\user\\Downloads\\output_Wo9KJb-5zuz1_2.wav";
//        String audioFilePath = "D:\\ai\\111\\111.wav";// YAMNet期望的采样率int sampleRate = 16000;// YAMNet帧大小,0.96秒int frameSizeInMs = 96;// YAMNet帧步长,0.48秒int hopSizeInMs = 48;try (AudioInputStream audioStream = AudioSystem.getAudioInputStream(Paths.get(audioFilePath).toFile())) {AudioFormat format = audioStream.getFormat();if (format.getSampleRate() != sampleRate || format.getChannels() != 1) {System.out.println("Warning: Audio must be 16kHz mono. Consider preprocessing.");}int frameSize = (int) (sampleRate * frameSizeInMs / 1000);int hopSize = (int) (sampleRate * hopSizeInMs / 1000);byte[] buffer = new byte[frameSize * format.getFrameSize()];short[] audioSamples = new short[frameSize];// 存储每个帧的音频数据List<Float> floatList = new ArrayList<>();while (true) {int bytesRead = audioStream.read(buffer);if (bytesRead == -1) {break;}// 将读取的字节转换为short数组(假设16位精度)for (int i = 0; i < bytesRead / format.getFrameSize(); i++) {audioSamples[i] = (short) ((buffer[i * 2] & 0xFF) | (buffer[i * 2 + 1] << 8));}// 对当前帧进行处理(例如,归一化和准备送入模型)float[] floats = processFrame(audioSamples);for (float aFloat : floats) {floatList.add(aFloat);}// 移动到下一个帧System.arraycopy(audioSamples, hopSize, audioSamples, 0, frameSize - hopSize);}// 将List<Float>转换为float[]float[] floatArray = new float[floatList.size()];for (int i = 0; i < floatList.size(); i++) {floatArray[i] = floatList.get(i);}return StdArrays.ndCopyOf(floatArray);} catch (UnsupportedAudioFileException | IOException e) {e.printStackTrace();}return null;}private static float[] processFrame(short[] frame) {// 示例:归一化音频数据到[-1.0, 1.0]float[] normalizedFrame = new float[frame.length];for (int i = 0; i < frame.length; i++) {// short的最大值为32767,故除以32768得到[-1.0, 1.0]normalizedFrame[i] = frame[i] / 32768f;}return normalizedFrame;}static Map<String,String> map=new ConcurrentHashMap<>();public static void main(String[] args) throws Exception {FloatNdArray floatNdArray = t1();TFloat32 tFloat32 = TFloat32.tensorOf(floatNdArray);//SavedModelBundle savedModelBundle = SavedModelBundle.load("D:\\saved_model", "serve");SavedModelBundle savedModelBundle = SavedModelBundle.load("C:\\Users\\user\\Downloads\\archive", "serve");Map<String, SignatureDef> signatureDefMap = MetaGraphDef.parseFrom(savedModelBundle.metaGraphDef().toByteArray()).getSignatureDefMap();/*** 获取基本定义信息*/SignatureDef modelSig = signatureDefMap.get("serving_default");String inputTensorName = modelSig.getInputsMap().get("waveform").getName();String outputTensorName = modelSig.getOutputsMap().get("output_0").getName();savedModelBundle.graph();try (Session session = savedModelBundle.session()) {/*JDK 17*/
//            Result run = session.runner()
//                    .feed(inputTensorName, tFloat32)
//                    .fetch(outputTensorName)
//                    .run();
//            Tensor out = run.get(0);
//            Shape shape = out.shape();
//
//            System.out.println(shape);/*JDK 8*/List<Tensor> run = session.runner().feed(inputTensorName, tFloat32).fetch(outputTensorName).run();Tensor tensor = run.get(0);Shape shape = tensor.shape();System.out.println(shape.asArray());String l=String.valueOf(shape.asArray()[0]);//读取CSV文件String csvFile = "C:\\Users\\user\\Downloads\\archive\\assets\\yamnet_class_map.csv";try {List<String> lines = Files.readAllLines(Paths.get(csvFile));for (String line : lines) {String[] values = line.split(",");map.put(values[0], values[2]);}} catch (IOException e) {e.printStackTrace();}String s = map.get(l);System.out.println(s);}}
}

相关文章:

Tensorflow音频分类

tensorflow https://www.tensorflow.org/lite/examples/audio_classification/overview?hlzh-cn 官方有移动端demo 前端不会 就只能找找有没有java支持 注意版本 注意JDK版本 package com.example.demo17.controller;import org.tensorflow.*; import org.tensorflow.ndarra…...

mqtt-emqx:keepAlive机制测试

mqtt keepAlive原理详见【https://www.emqx.com/zh/blog/mqtt-keep-alive】 # 下面开始写测试代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2…...

C++基础7:STL六大组件

目录 一、标准容器 1、顺序容器 vector ​编辑 deque list 容器适配器 stack queue prority_queue: 关联容器 有序关联容器set、mutiset、map、mutimap 增删查O(log n) 无序关联容 unordered_set、unordered_mutiset、unordered_map、unordered_mutimap 增删…...

特别名词Test Paper1

特别名词Test Paper1 ability 能力abstract 摘要accountant 会计accuracy 准确度acid 酸action 行动activity 活动actor 男演员adult 成人adventure 冒险advertisements 广告&#xff0c;宣传advertising 广告advice 建议age 年龄agency 代理机构&#xff0c;中介agreement 同…...

每日题库:Huawe数通HCIA——全部【813道】

1.关于ARP报文的说法错误的是?单选 A.ARP报文不能被转发到其他广播域 B.ARP应答报文是单播方发送的 C.任何链路层协议都需要ARP协议辅助获取数据链路层标识 DARP请求报文是广播发送的 答案:C  解析: STP协议不需要ARP辅助 2.园区网络搭建时,使用以下哪种协议可以避免出现二层…...

#04 Stable Diffusion与其他AI图像生成技术的比较

文章目录 前言1. Stable Diffusion2. DALL-E3. GAN&#xff08;生成对抗网络&#xff09;4. VQ-VAE比较总结 前言 随着人工智能技术的飞速发展&#xff0c;AI图像生成技术已成为创意产业和科研领域的热点。Stable Diffusion作为其中的佼佼者&#xff0c;其性能和应用广受关注。…...

不确定性+电动汽车!含高比例新能源和多类型电动汽车的配电网能量管理程序代码!

前言 能源供应的可持续性和清洁性是当今世界共同关注的议题&#xff0c;配电网与可再生能源发电相结合&#xff0c;通过多能互补和梯级利用&#xff0c;在不同时空取长补短&#xff0c;提高能源利用率&#xff0c;减少温室气体排放&#xff0c;是解决能源短缺和环境问题的有效…...

准确-K8s系列文章-修改containerd 默认数据目录

修改 Kubernetes 集群中 containerd 默认数据目录为 /data/containerd 前言 本文档适用于 Kubernetes 1.24 及以上版本的集群&#xff0c;介绍如何将 containerd 默认的数据目录从 /var/lib/containerd 修改为 /data/containerd。 步骤 1. 停止 containerd 服务&#xff08…...

深入探索Linux命令:`aulastlog`

深入探索Linux命令&#xff1a;aulastlog 在Linux系统中&#xff0c;安全管理一直是管理员和用户关注的焦点。aulastlog是一个非常有用的工具&#xff0c;用于显示用户最近登录的日志。它通过分析/var/log/lastlog文件来提供这些信息&#xff0c;这个文件记录了系统上所有用户…...

Debezium日常分享系列之:Debezium 2.6.2.Final发布

Debezium日常分享系列之&#xff1a;Debezium 2.6.2.Final发布 一、新功能和改进1.Oracle 数据库查询过滤超过 1000 个表 二、修复和稳定性改进1.PostgreSQL 偏移刷新竞争条件2.Avro 兼容性 一、新功能和改进 1.Oracle 数据库查询过滤超过 1000 个表 Debezium Oracle 连接器允…...

PHP质量工具系列之phpmd

PHPMD PHP Mess Detector 它是PHP Depend的一个衍生项目&#xff0c;用于测量的原始指标。 PHPMD所做的是&#xff0c;扫描项目中可能出现的问题如&#xff1a; 可能的bug次优码过于复杂的表达式未使用的参数、方法、属性 PHPMD是一个成熟的项目&#xff0c;它提供了一组不同的…...

【java】速度搭建一个springboot项目

使用软件&#xff1a;IDEA&#xff0c;mysql 使用框架&#xff1a;springboot mybatis-plus druid 坑点 使用IDEA搭建一个springboot项目的时候&#xff0c;需要考虑一下IDEA版本支持的JDK版本以及maven版本。否则再构建项目&#xff0c;引入pom的时候就会报错。 需要检查…...

SystemVerilog测试框架示例

这里是一个完整的SystemVerilog测试框架示例&#xff0c;包括随机化测试和详细注释。 顶层模块 (Top Module) module top;// 信号声明logic clk;logic rst_n;// 接口实例化dut_if dut_if_inst(.clk(clk), .rst_n(rst_n));// DUT实例化 (假设DUT模块名为dut)dut u_dut(.clk(du…...

每天一个数据分析题(三百五十六)-图表决策树

图表决策树中将图表分成四类&#xff0c;分别是&#xff1f; A. 比较类 B. 序列类 C. 构成类 D. 描述类 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案...

Prism 入门06,发布订阅(入门完结)

本章节介绍使用 Prism 框架的消息聚合器 IEventAggregator ,实现如何进行消息发布,订阅,取消订阅的功能 继续使用上一章节使用的 Prism WPF 空模板项目 BlankApp1 1.首先,在使用 Prism 框架当中,进行事件消息的发布和订阅之前,需要定义发布事件的事件消息模型。如下所示:…...

2. pytorch环境安装

概述 ​ 本文提供基于Anaconda环境Windows11操作系统的Pytorch深度学习环境的配置。深度学习环境分为GPU和CPU两大部分。使用GPU进行环境配置&#xff0c;需要保证电脑配有独立显卡&#xff0c;并且显卡驱动安装正常&#xff0c;详情见前文。 1. 创建新的虚拟环境用来配置Pyt…...

力扣爆刷第148天之贪心算法五连刷(区间合并)

力扣爆刷第148天之贪心算法五连刷&#xff08;区间合并&#xff09; 文章目录 力扣爆刷第148天之贪心算法五连刷&#xff08;区间合并&#xff09;一、406. 根据身高重建队列二、452. 用最少数量的箭引爆气球三、435. 无重叠区间四、763. 划分字母区间五、56. 合并区间六、738.…...

JSON及Python操作JSON相关

JSON及Python操作JSON相关 Json简介及Python操作Json相关示例。 1. JSON概念及支持的数据类型 1.1 什么是 JSON&#xff1f; JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解…...

[ 网络通信基础 ]——网络的传输介质(双绞线,光纤,标准,线序)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;网络通信基础TCP/IP专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年6月8日14点23分 &#x1f004;️文章质量&#xff1a;94分 前言—— 在现代通信网络中&#xff0c;传输介质是数据传…...

Android 高德地图API(新版)

新版高德地图 前言正文一、创建应用① 获取PackageName② 获取调试版安全码SHA1③ 获取发布版安全码SHA1 二、配置项目① 导入SDK② 配置AndroidManifest.xml 三、获取当前定位信息① ViewBinding使用和导包② 隐私合规设置③ 权限请求④ 初始化定位⑤ 获取定位信息 四、显示地…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...