YOLOv5车流量监测系统研究
一. YOLOv5算法详解
YOLOv5网络架构
上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本论文重点讲解YOLOv5s,本论文所研究的系统使用的就是YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。
输入端:输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
基准网络:基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
Neck网络:Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
Head输出端:Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。
二. 网络结构优化
YOLOv5s算法的下采样次数多,降低图像分辨率的同时导致检测效果低下,且层数较深的特征图像很难学习到小尺寸目标的特征信息,无法有效检测小目标。本文在YOLO5s 算法中增加小目标检测层,将浅层特征图与深层特征图拼接后进行检测小目标检测层由上采样模块、融合模块、BottleneckCSP 模块与卷积模块组成。如下图所示,红色栅格区域为小目标检测层。对第 17 层图像特征上采样后放大输入图像细节,使得小目标物体经过上采样后,特征信息中小目标物体的像素点占具一定比例将第20层输出图像与主千网络中第2层输出图像进行融合,使得深层特征图与浅层特征图在语义性和空间性上进行更好的平衡,以优化小尺寸目标检测效果。在原三组锚框基础上,增加一组较小的错框,这些锚框长宽分别为(6,7)、(9,15)、(16,12)。
改进YOLOv5s网络结构
三. 异类冗余框抑制
YOLOv5s 算法中结果输出采用非极大值抑制消除同类型重复检测的边界框,但存在将目标检测为不同类型的情况。如图3所示,小汽车被检测为car 后又被检测为 truck,将这组边界框称为异类几余框。针对此问题,本文在 YOLOv5s 算法中提出异类元余框抑制方法,该方法包括异类几余框判别和融合两步操作。
异类冗余框
YOLOv5s 算法结果输出为二维数组,数组每行代表一条检测结果,每条检测结果表示为:
式中:为边界框i的预测结果;
与
为边界框左上角点的横纵坐标(pixel);
与
为边界框右下角点的横纵坐标 (pixel);
为预测概率;
在车辆检测过程中,若同一辆车被多次检测将每次识别类型保存于类型字典中,输出车辆类型时选择数值最大的识别类型。
为识别类型;{
:l}为类型字典,l为车辆类型检测次数判别异类元余框流程为: 计算两两边界框间IOU (Intersection over Union)值,若IOU 值高于异类冗余框闯值,则判定边界框为异类几余框。成值根据非极大值抑制模块的闯值取值。IOU 的计算公式为:
式中:为边界框i与j重叠区域面积pixel pixel);
a;为边界框i的面积(pixel* pixel)融合异类几余框步骤为:取异类元余框坐标均值作为融合边界框坐标,将两个边界框类型加权求和后放入类型字典。识别类型不同时,采用加权非极大值抑制以增加注意框面积,丰富模型提取到的细节数据信息,使得边界框定位更加准确,从而提升算法检测性能。异类冗余框融合的结果表示为:
四. 算法流程
改进YOLOv5s算法车辆检测系统含有四个子模块:数据库建立、网络结构优化、模型训练和车辆检测,如下图所示。数据库提供模型训练所需的数据集;以YOLOv5s 为基准算法,增加小目标检测层优化神经网络小尺寸车辆图像的检测能力;在改进YOLOv5s 网络上训练算法以更新算法参数;利用改进YOLOv5s算法检测图像获得检测目标的边界框基于非极大值抑制模块消除同类型的重复检测边界框,然后利用异类冗余框抑制模块消除不同类型的重复检测边界框。
改进YOLOv5s车辆检测系统
相关文章:

YOLOv5车流量监测系统研究
一. YOLOv5算法详解 YOLOv5网络架构 上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。Y…...

单元测试覆盖率
什么是单元测试覆盖率 关于其定义,先来看一下维基百科上的一段描述: 代码覆盖(Code coverage)是软件测试中的一种度量,描述程序中源代码被测试的比例和程度,所得比例称为代码覆盖率。 简单来理解ÿ…...

逻辑这回事(三)----时序分析与时序优化
基本时序参数 图1.1 D触发器结构 图1.2 D触发器时序 时钟clk采样数据D时,Tsu表示数据前边沿距离时钟上升沿的时间,MicTsu表示时钟clk能够稳定采样数据D的所要求时间,Th表示数据后边沿距离时钟上升沿的时间,MicTh表示时钟clk采样…...

[JAVASE] 类和对象(二) -- 封装
目录 一. 封装 1.1 面向对象的三大法宝 1.2 封装的基本定义与实现 二. 包 2.1 包的定义 2.2 包的作用 2.3 包的使用 2.3.1 导入类 2.3.2 导入静态方法 三. static 关键字 (重要) 3.1 static 的使用 (代码例子) 3.1.1 3.1.2 3.1.3 3.1.4 四. 总结 一. 封装 1.1 面向对象…...

开发网站,如何给上传图片的服务器目录授权
开发网站,上传图像时提示”上传图片失败,Impossible to create the root directory /var/www/html/xxxxx/public/uploads/avatar/20240608.“ 在Ubuntu上,你可以通过调整文件夹权限来解决这个问题。首先,确保Web服务器(…...
特别名词Test Paper2
特别名词Test Paper2 cabinet 橱柜cable 电缆,有线电视cafe 咖啡厅cafeteria 咖啡店,自助餐厅cage 笼子Cambridge 剑桥camel 骆驼camera 相机camp 露营campus 校园candidate 候选人,考生candle 蜡烛canteen 食堂capital 资金,首都…...

数据结构-AVL树
目录 二叉树 二叉搜索树的查找方式: AVL树 AVL树节点的实现 AVL树节点的插入操作 AVL树的旋转操作 右旋转: 左旋转: 左右双旋: 右左双旋: AVL树的不足和下期预告(红黑树) 二叉树 了…...

数字科技如何助力博物馆设计,强化文物故事表现力?
国际博物馆日是每年为了推广博物馆和文化遗产,而设立的一个特殊的日子,让我们可以深入探讨博物馆如何更好地呈现和保护我们的文化遗产,随着近年来的数字科技发展,其在博物馆领域的应用越来越广泛,它为博物馆提供了新的…...

德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第七周) - 结构化预测
结构化预测 0. 写在大模型前面的话1. 词法分析 1.1. 分词1.2. 词性标注 2.2. 句法分析 2.3. 成分句法分析2.3. 依存句法分析 3. 序列标注 3.1. 使用分类器进行标注 4. 语义分析 0. 写在大模型前面的话 在介绍大语言模型之前,先把自然语言处理中遗漏的结构化预测补…...
5-Maven-setttings和pom.xml常用配置一览
5-Maven-setttings和pom.xml常用配置一览 setttings.xml配置 <?xml version"1.0" encoding"UTF-8"?> <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xs…...
input输入框设置样式
input清除自带样式 input, textarea,label, button,select,img,form,table,a{-webkit-tap-highlight-color: rgba(255,255,255,0);-webkit-tap-highlight-color: transparent;margin: 0;padding: 0;border: none; } /*去除iPhone中默认的input样式*/ input, button, select, t…...

平稳交付 20+ 医院,卓健科技基于 OpenCloudOS 的落地实践
导语:随着数字化转型于各个行业领域当中持续地深入推进,充当底层支撑的操作系统正发挥着愈发关键且重要的作用。卓健科技把 OpenCloudOS 当作首要的交付系统,达成了项目交付速度的提升、安全可靠性的增强、运维成本的降低。本文将会阐述卓健科…...

Python下载库
注:本文一律使用windows讲解。 一、使用cmd下载 先用快捷键win R打开"运行"窗口,如下图。 在输入框中输入cmd并按回车Enter或点确定键,随后会出现这个画面: 输入pip install 你想下载的库名,并按回车&…...

SAP HCM OPT函数作用
导读 INTRODUCTION OPT函数:SAP HCM工资核算是很多函数的汇总集,原有有兴趣问过SAP的人为什么SCHEMA需要这样设计,SAP的人说是用汇编的逻辑设计的,当时是尽可能用机器语言加速速度读取,每个函数都有对应的业务逻辑代码…...

Tensorflow音频分类
tensorflow https://www.tensorflow.org/lite/examples/audio_classification/overview?hlzh-cn 官方有移动端demo 前端不会 就只能找找有没有java支持 注意版本 注意JDK版本 package com.example.demo17.controller;import org.tensorflow.*; import org.tensorflow.ndarra…...

mqtt-emqx:keepAlive机制测试
mqtt keepAlive原理详见【https://www.emqx.com/zh/blog/mqtt-keep-alive】 # 下面开始写测试代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2…...

C++基础7:STL六大组件
目录 一、标准容器 1、顺序容器 vector 编辑 deque list 容器适配器 stack queue prority_queue: 关联容器 有序关联容器set、mutiset、map、mutimap 增删查O(log n) 无序关联容 unordered_set、unordered_mutiset、unordered_map、unordered_mutimap 增删…...
特别名词Test Paper1
特别名词Test Paper1 ability 能力abstract 摘要accountant 会计accuracy 准确度acid 酸action 行动activity 活动actor 男演员adult 成人adventure 冒险advertisements 广告,宣传advertising 广告advice 建议age 年龄agency 代理机构,中介agreement 同…...

每日题库:Huawe数通HCIA——全部【813道】
1.关于ARP报文的说法错误的是?单选 A.ARP报文不能被转发到其他广播域 B.ARP应答报文是单播方发送的 C.任何链路层协议都需要ARP协议辅助获取数据链路层标识 DARP请求报文是广播发送的 答案:C 解析: STP协议不需要ARP辅助 2.园区网络搭建时,使用以下哪种协议可以避免出现二层…...
#04 Stable Diffusion与其他AI图像生成技术的比较
文章目录 前言1. Stable Diffusion2. DALL-E3. GAN(生成对抗网络)4. VQ-VAE比较总结 前言 随着人工智能技术的飞速发展,AI图像生成技术已成为创意产业和科研领域的热点。Stable Diffusion作为其中的佼佼者,其性能和应用广受关注。…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...