深度学习Week16——数据增强
文章目录
深度学习Week16——数据增强
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
2.1 加载数据
2.2 配置数据集
2.3 数据可视化
四、数据增强
五、增强方式
1、将其嵌入model中
2、在Dataset数据集中进行数据增强
六、训练模型
七、自定义增强函数
一、前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
本篇内容分为两个部分,前面部分是学习K同学给的算法知识点以及复现,后半部分是自己的拓展与未解决的问题
本期学习了数据增强函数并自己实现一个增强函数,使用的数据集仍然是猫狗数据集。
二、我的环境
- 电脑系统:Windows 10
- 语言环境:Python 3.8.0
- 编译器:Pycharm2023.2.3
深度学习环境:TensorFlow
显卡及显存:RTX 3060 8G
三、前期工作
1、配置环境
import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)
输出:
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)
2、 导入数据
导入所有猫狗图片数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊
2.1 加载数据
data_dir = "/home/mw/input/dogcat3675/365-7-data"
img_height = 224
img_width = 224
batch_size = 32train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
使用
image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
tf.keras.preprocessing.image_dataset_from_directory()
会将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据。
- class_names
- validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。
- subset: training或validation之一。仅在设置validation_split时使用。
- seed: 用于shuffle和转换的可选随机种子。
- batch_size: 数据批次的大小。默认值:32
- image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
输出:
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
由于原始的数据集里不包含测试集,所以我们需要自己创建一个
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
Number of validation batches: 60
Number of test batches: 15
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
[‘cat’, ‘dog’]
2.2 配置数据集
AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
2.3 数据可视化
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")
四 、数据增强
使用下面两个函数来进行数据增强:
tf.keras.layers.experimental.preprocessing.RandomFlip:
水平和垂直随机翻转每个图像。tf.keras.layers.experimental.preprocessing.RandomRotation:
随机旋转每个图像
data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),tf.keras.layers.experimental.preprocessing.RandomRotation(0.3),
])
第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照0.3的弧度值进行随机旋转。
# Add the image to a batch.
image = tf.expand_dims(images[i], 0)plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")
五、增强方式
1. 将其嵌入model中
model = tf.keras.Sequential([data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])
Epoch 1/20
43/43 [==============================] - 18s 103ms/step - loss: 1.2824 - accuracy: 0.5495 - val_loss: 0.4272 - val_accuracy: 0.8941
Epoch 2/20
43/43 [==============================] - 3s 55ms/step - loss: 0.3326 - accuracy: 0.8815 - val_loss: 0.1882 - val_accuracy: 0.9309
Epoch 3/20
43/43 [==============================] - 3s 54ms/step - loss: 0.1614 - accuracy: 0.9488 - val_loss: 0.1493 - val_accuracy: 0.9412
Epoch 4/20
43/43 [==============================] - 2s 54ms/step - loss: 0.1215 - accuracy: 0.9557 - val_loss: 0.0950 - val_accuracy: 0.9721
Epoch 5/20
43/43 [==============================] - 3s 54ms/step - loss: 0.0906 - accuracy: 0.9666 - val_loss: 0.0791 - val_accuracy: 0.9691
Epoch 6/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0614 - accuracy: 0.9768 - val_loss: 0.1131 - val_accuracy: 0.9559
Epoch 7/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0603 - accuracy: 0.9807 - val_loss: 0.0692 - val_accuracy: 0.9794
Epoch 8/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0577 - accuracy: 0.9793 - val_loss: 0.0609 - val_accuracy: 0.9779
Epoch 9/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0511 - accuracy: 0.9825 - val_loss: 0.0546 - val_accuracy: 0.9779
Epoch 10/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0462 - accuracy: 0.9871 - val_loss: 0.0628 - val_accuracy: 0.9765
Epoch 11/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0327 - accuracy: 0.9895 - val_loss: 0.0790 - val_accuracy: 0.9721
Epoch 12/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0242 - accuracy: 0.9938 - val_loss: 0.0580 - val_accuracy: 0.9794
Epoch 13/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0354 - accuracy: 0.9907 - val_loss: 0.0797 - val_accuracy: 0.9735
Epoch 14/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0276 - accuracy: 0.9900 - val_loss: 0.0810 - val_accuracy: 0.9691
Epoch 15/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0243 - accuracy: 0.9931 - val_loss: 0.1063 - val_accuracy: 0.9676
Epoch 16/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0253 - accuracy: 0.9914 - val_loss: 0.1142 - val_accuracy: 0.9721
Epoch 17/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0205 - accuracy: 0.9937 - val_loss: 0.0726 - val_accuracy: 0.9706
Epoch 18/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0154 - accuracy: 0.9948 - val_loss: 0.0741 - val_accuracy: 0.9765
Epoch 19/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0155 - accuracy: 0.9966 - val_loss: 0.0870 - val_accuracy: 0.9721
Epoch 20/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0259 - accuracy: 0.9907 - val_loss: 0.1194 - val_accuracy: 0.9721
这样做的好处是:
数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。
2. 在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNEdef prepare(ds):ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)return ds
model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])
Epoch 1/20
75/75 [==============================] - 11s 133ms/step - loss: 0.8828 - accuracy: 0.7113 - val_loss: 0.1488 - val_accuracy: 0.9447
Epoch 2/20
75/75 [==============================] - 2s 33ms/step - loss: 0.1796 - accuracy: 0.9317 - val_loss: 0.0969 - val_accuracy: 0.9658
Epoch 3/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0999 - accuracy: 0.9655 - val_loss: 0.0362 - val_accuracy: 0.9879
Epoch 4/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0566 - accuracy: 0.9810 - val_loss: 0.0448 - val_accuracy: 0.9853
Epoch 5/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0426 - accuracy: 0.9807 - val_loss: 0.0142 - val_accuracy: 0.9937
Epoch 6/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0149 - accuracy: 0.9944 - val_loss: 0.0052 - val_accuracy: 0.9989
Epoch 7/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0068 - accuracy: 0.9974 - val_loss: 7.9693e-04 - val_accuracy: 1.0000
Epoch 8/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0015 - accuracy: 1.0000 - val_loss: 4.8532e-04 - val_accuracy: 1.0000
Epoch 9/20
75/75 [==============================] - 2s 33ms/step - loss: 4.5804e-04 - accuracy: 1.0000 - val_loss: 1.9160e-04 - val_accuracy: 1.0000
Epoch 10/20
75/75 [==============================] - 2s 33ms/step - loss: 1.7624e-04 - accuracy: 1.0000 - val_loss: 1.1390e-04 - val_accuracy: 1.0000
Epoch 11/20
75/75 [==============================] - 2s 33ms/step - loss: 1.1646e-04 - accuracy: 1.0000 - val_loss: 8.7005e-05 - val_accuracy: 1.0000
Epoch 12/20
75/75 [==============================] - 2s 33ms/step - loss: 9.0645e-05 - accuracy: 1.0000 - val_loss: 7.1111e-05 - val_accuracy: 1.0000
Epoch 13/20
75/75 [==============================] - 2s 33ms/step - loss: 7.4695e-05 - accuracy: 1.0000 - val_loss: 5.9888e-05 - val_accuracy: 1.0000
Epoch 14/20
75/75 [==============================] - 2s 33ms/step - loss: 6.3227e-05 - accuracy: 1.0000 - val_loss: 5.1448e-05 - val_accuracy: 1.0000
Epoch 15/20
75/75 [==============================] - 2s 33ms/step - loss: 5.4484e-05 - accuracy: 1.0000 - val_loss: 4.4721e-05 - val_accuracy: 1.0000
Epoch 16/20
75/75 [==============================] - 2s 33ms/step - loss: 4.7525e-05 - accuracy: 1.0000 - val_loss: 3.9201e-05 - val_accuracy: 1.0000
Epoch 17/20
75/75 [==============================] - 2s 33ms/step - loss: 4.1816e-05 - accuracy: 1.0000 - val_loss: 3.4528e-05 - val_accuracy: 1.0000
Epoch 18/20
75/75 [==============================] - 2s 33ms/step - loss: 3.7006e-05 - accuracy: 1.0000 - val_loss: 3.0541e-05 - val_accuracy: 1.0000
Epoch 19/20
75/75 [==============================] - 2s 33ms/step - loss: 3.2878e-05 - accuracy: 1.0000 - val_loss: 2.7116e-05 - val_accuracy: 1.0000
Epoch 20/20
75/75 [==============================] - 2s 33ms/step - loss: 2.9274e-05 - accuracy: 1.0000 - val_loss: 2.4160e-05 - val_accuracy: 1.0000
六、训练模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])epochs=20
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
使用方法一:
15/15 [==============================] - 1s 58ms/step - loss: 0.0984 - accuracy: 0.9646
Accuracy 0.9645833373069763
使用方法二:
15/15 [==============================] - 1s 58ms/step - loss: 2.7453e-05 - accuracy: 1.0000
Accuracy 1.0
七、自定义增强函数
import random
def aug_img(image):seed = random.randint(0, 10000) # 随机种子# 随机亮度image = tf.image.stateless_random_brightness(image, max_delta=0.2, seed=[seed, 0])# 随机对比度image = tf.image.stateless_random_contrast(image, lower=0.8, upper=1.2, seed=[seed, 1])# 随机饱和度image = tf.image.stateless_random_saturation(image, lower=0.8, upper=1.2, seed=[seed, 2])# 随机色调image = tf.image.stateless_random_hue(image, max_delta=0.2, seed=[seed, 3])# 随机翻转水平和垂直image = tf.image.stateless_random_flip_left_right(image, seed=[seed, 4])image = tf.image.stateless_random_flip_up_down(image, seed=[seed, 5])# 随机旋转image = tf.image.rot90(image, k=random.randint(0, 3)) # 旋转0, 90, 180, 270度return image
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
Min and max pixel values: 2.4591687 241.47968
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = aug_img(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")
然后我们使用了第二种增强方法,以下为他的结果:
15/15 [==============================] - 1s 57ms/step - loss: 0.1294 - accuracy: 0.9604
Accuracy 0.9604166746139526
相关文章:

深度学习Week16——数据增强
文章目录 深度学习Week16——数据增强 一、前言 二、我的环境 三、前期工作 1、配置环境 2、导入数据 2.1 加载数据 2.2 配置数据集 2.3 数据可视化 四、数据增强 五、增强方式 1、将其嵌入model中 2、在Dataset数据集中进行数据增强 六、训练模型 七、自定义增强函数 一、前言…...

python-自幂数判断
[题目描述]: 自幂数是指,一个N 位数,满足各位数字N 次方之和是本身。例如,153153 是 33 位数,其每位数的 33 次方之和,135333153135333153,因此 153153 是自幂数;16341634 是 44 位数…...

RocketMQ教程(三):RocketMQ的核心组件
四个核心组件 RocketMQ 的架构采用了典型的分布式系统设计理念,以确保高性能、高可用和可扩展性。RocketMQ 主要由四个核心组件构成:NameServer、Broker、Producer 和 Consumer。下面是对这些组件以及它们在 RocketMQ 中的角色和功能的概述: 1. NameServer 角色和功能:Name…...
46.SQLserver中按照多条件分组:查询每个地方的各种水果的种植数量,新增时,一个地方同时有几种水果,只插入一条记录,同时多种水果之间使用|隔开
1.SQLserver中按照多条件分组 ,分组条件包括(一个字段使用|进行分割,如:apple|orange,查询时,apple和orange分别对应一条数据) 例如:SQL如下: SELECT FROM ( SELECT CDFBM 地方编码…...

C盘满了怎么办,Windows11的C盘没有磁盘清理选项怎么办,一次搞定
问题: 太久没清电脑了,满的跟垃圾堆一样。。。C盘红色看上去很不妙。 一. C盘满了怎么办: 1. 删除临时文件 找到 C:\Windows\Temp,进入Temp资料夹,选中所有文件夹和文件,按下ShiftDelete键,彻…...
「动态规划」当小偷改行去当按摩师,会发生什么?
一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),…...
Python | 排队取奶茶
队列的基本概念(队头、队尾)和特点(先入先出) 在 Python 语言中,标准库中的queue模块提供了多种队列的实现,比如普通队列和优先级队列,因此你可以使用queue.Queue类来创建队列,不过…...

mysql当前状态分析(show status)
文章目录 查看当前线程数据查询连接情况查询缓存相关查询锁相关查询增删改查执行次数查询DDL创建相关 SHOW STATUS 是一个在 MySQL 中用来查看服务器运行状态的命令。它可以帮助你了解服务器的当前性能,包括连接数、表锁定、缓冲区使用情况等信息。 查看当前线程数据…...
Google Earth Engine(GEE)——使用机器学习进行金三角大米分布图
第 1 步:转到https://code.earthengine.google.com/打开代码编辑器 第 2 步:使用以下代码从 Google Earth Engine Asset 导入数据 // 导入影像集合 var composites = ee.ImageCollection("projects/servir-mekong/yearlyComposites"); // 导入训练数据 var data …...
MyBatis一级和二级缓存介绍
MyBatis是一个持久层框架,它提供了一级缓存和二级缓存来提高数据库操作的性能。下面是一级缓存和二级缓存的区别理解、画图和知识点总结: 一级缓存: 一级缓存是MyBatis默认开启的缓存层,它是SqlSession级别的缓存,也…...

PowerDesigner遍历导出所有表结构到Excel
PowerDesigner遍历导出所有表到Excel 1.打开需要导出表结构到Excel的pdm文件 2.点击Tools|Execute Commands|Edit/Run Script菜单或按下快捷键Ctrl Shift X打开脚本窗口,输入示例VBScript脚本,修改其中的Excel模板路径及工作薄页签,点Run…...

JavaSE——抽象类和接口
目录 一 .抽象类 1.抽象类概念 2.抽象类语法 3.抽象类特性 4.抽象类的作用 二. 接口 1.接口的概念 2.语法规则 3.接口的使用 4.接口特性 5.实现多个接口 6.接口间的继承 三.抽象类和接口的区别 一 .抽象类 1.抽象类概念 在面向对象的概念中,所有的对…...

生成式人工智能 - stable diffusion web-ui安装教程
一、Stable Diffusion WEB UI 屌丝劲发作了,所以本地调试了Stable Diffusion之后,就去看了一下Stable Diffusion WEB UI,网络上各种打包套件什么的好像很火。国内的也就这个层次了,老外搞创新,国内跟着屁股后面搞搞应用层,就叫大神了。 不扯闲篇了,我们这里从git源码直接…...

11-Linux文件系统与日志分析
11.1深入理解Linux文件系统 在处理Liunx系统出现故障时,故障的症状是最易发现。数学LInux系统中常见的日志文件,可以帮助管理员快速定位故障点,并及时解决各种系统问题。 11.1.1 inode与block详解 文件系统通常会将这两部分内容分别存放在…...

mac M1下安装PySide2
在M1下装不了PySide2, 是因为PySide2没有arm架构的包 1 先在M1上装qt5 安装qt主要是为了能用里面的Desinger, uic, rcc brew install qt5 我装完的路径在/opt/homebrew/opt/qt5 其中Designer就是用来设计界面的 rcc用resource compiler, 编绎rc资源文件的, 生成对应的py文件…...

超详解——识别None——小白篇
目录 1. 内建类型的布尔值 2. 对象身份的比较 3. 对象类型比较 4. 类型工厂函数 5. Python不支持的类型 总结: 1. 内建类型的布尔值 在Python中,布尔值的计算遵循如下规则: None、False、空序列(如空列表 [],空…...
C++的MQTT开发:使用Paho的C++接口实现消息发布、订阅、连接RabbitMQ
C Paho实现MQTT消息发布功能 要使用paho的cpp接口实现发布MQTT消息的功能,需要进行以下步骤: 安装paho库:首先从paho官方网站下载并安装paho的C库。可以从https://www.eclipse.org/paho/clients/cpp/ 下载适合操作系统的版本。 创建MQTT客户…...

深度网络学习笔记(二)——Transformer架构详解(包括多头自注意力机制)
Transformer架构详解 前言Transformer的整体架构多头注意力机制(Multi-Head Attention)具体步骤1. 步骤12. 步骤23. 步骤34. 步骤4 Self-Attention应用与比较Self-Attention用于图像处理Self-Attention vs. CNNSelf-Attention vs. RNN Transformer架构详…...

Python 快速查找并替换Excel中的数据
Excel中的查找替换是一个非常实用的功能,能够帮助用户快速完成大量数据的整理和处理工作,避免手动逐一修改数据的麻烦,提高工作效率。要使用Python实现这一功能, 我们可以借助Spire.XLS for Python 库,具体操作如下&am…...
KafkaStream Local Store和Global Store区别和用法
前言 使用kafkaStream进行流式计算时,如果需要对数据进行状态处理,那么常用的会遇到kafkaStream的store,而store也有Local Store以及Global Store,当然也可以使用其他方案的来进行状态保存,文本主要理清楚kafkaStream…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...