当前位置: 首页 > news >正文

大模型多轮问答的两种方式

前言

大模型的多轮问答难点就是在于如何精确识别用户最新的提问的真实意图,而在常见的使用大模型进行多轮对话方式中,我接触到的只有两种方式

  • 一种是简单地直接使用 userassistant 两个角色将一问一答的会话内容喂给大模型,让它能够结合最新的问题靠自己去理解用户的最新的问题的含义。
  • 另外一种方式是在会话过程中将历史的问题进行维护,再使用另外一个大模型结合最新的问题去理解用户当前的意图。

两种方式都可以,但是在我目前的业务上我目前使用的是后者,因为比较容易实现,效果也不错。

第一种方式

这是使用的是 qwen 的多轮问答 api ,要使用这一种方式,需要维护一个相当长的历史会话记录 messages ,而且要保证 messages 中的 user/assistant 消息交替出现,这是一个必须要遵循的条件,如果是碰到异常,必须要对 messages 中最后的无效对话进行清理。这里就是将理解用户意图和解决用户的问题都混在了一块,对于我要做的业务,回答内容的不确定性太高,而且实现成本也高,需要在会话中加入大量业务代码,所以果断放弃了。

这里的代码主要实现了一个简易地关于烹饪的对话,只有两轮,实现逻辑比较简单,写的比较粗糙,理解意思即可。

def multi_round():messages = [{'role': 'system', 'content': '你是一个绝佳的烹饪助手'},{'role': 'user', 'content': '如何做西红柿炖牛腩?'}]response = Generation.call(model="qwen-turbo",  messages=messages, result_format='message')if response.status_code == HTTPStatus.OK:print(response)messages.append({'role': response.output.choices[0]['message']['role'],'content': response.output.choices[0]['message']['content']})   # 将assistant的回复添加到messages列表中else:print(response.message)messages = messages[:-1]  # 如果响应失败,将最后一条user message从messages列表里删除,确保 user/assistant 消息交替出现messages.append({'role': 'user', 'content': '不放糖可以吗?'})  # 将新一轮的user问题添加到messages列表中response = Generation.call(model="qwen-turbo", messages=messages, result_format='message', )if response.status_code == HTTPStatus.OK:print(response)messages.append({'role': response.output.choices[0]['message']['role'],'content': response.output.choices[0]['message']['content']})  # 将第二轮的assistant的回复添加到messages列表中else:print(response.message)messages = messages[:-1]  # 如果响应失败,将最后一条user message从messages列表里删除,确保 user/assistant 消息交替出现

第二种方式

在我所做地业务中,对于 assistant 的回复不关心,主要关心的是用户的问题,所以我只关注 user 的历史提问,在实现的时候只需要维护一个列表 history,始终将最新的用户提问追加即可,为了保证列表信息的有效性,我始终只维护最后 10 个问题。我这里使用 qwen-max 模型对历史提问进行总结,并且按照我要求的方式进行输出。也就是说这个模型只负责总结历史问题,对于业务问题的回答是其他大模型干的事情,任务分工明确就减少了不确定性。

@app.route('/get_last_question', methods=["POST"])
def get_last_question():global user_datalogging.info("-"*20)data = request.get_json()if 'question' not in data or not data['question'] or 'userId' not in data or not data['userId']:return "无法理解或者无法解决,请重新输入问题"question = data['question']userId = data['userId']try:user_data = load_data(config)  # 加载用户数据if userId not in user_data:user_data[userId] = []user_data[userId].append(question)  # 获取 userId 对应的历史对话记录user_data[userId] = user_data[userId][-10:]  # 只保留历史上 10 个对话记录logging.info(f"正在解析用户 【{userId}】 意图,问题历史是 {user_data[userId]}...\n\n")history = user_data[userId]history_str = ""if len(history)>1:history_str = "历史上我依次提问了以下问题:\n"for i,h in enumerate(history[:-1]):history_str += f"时间 10:06:0{i+1} ,问题是: {h}\n"else:history_str += "目前暂无用户提问历史记录。"messages = [{'role': 'system','content': '您是一名善于从历史提问中分析用户的最新意图的助手,请根据提问历史记录,分析并总结用户的最新问题的完整意图。'},{'role': 'user','content': f"根据提问历史记录,分析并总结用户的最新问题的完整意图。不要做冗余的解释或者赘述。如果用户提出的问题语义模糊不清无法识别,可以直接返回空字符串。答案的模板必循遵循“【{{我的最新的问题描述}}】”,总结出来的问题还必须要满足下面的要求:\n"f"1、如果用户的问题查询的是“杭州市”或者“杭州”范围的数据一律使用“全市”进行替换,因为业务数据范围默认就是全杭州市的数据,所以无需重复再提起,但是我们不对包含“杭州市”或者”杭州“字符串的单位名称进行任何处理,因为单位名称具有独特的含义。\n"f"2、用户的简短问题或者意图模糊的提问(如‘2024年呢’等)通常是对之前历史问题的追问或者补充,请根据历史问题记录推断出完整的问题。\n"f"例子:\n"f"输入的历史问题列表是:\n "f"时间 2024-6-6 ,问题是:升序统计2023年各项目类型下管线项目计划数和计划投资金额\n "f"我最新的问题是:统计杭州市2023年管线和管廊建设计划的执行率\n"f"经过分析历史问题列表发现最新的问题和前面的问题关系不大,所以直接最后总结出来的问题是 “统计杭州市2023年管线和管廊建设计划的执行率”, 从问题中可以看出要查询杭州市范围的数据,按照要求我们知道默认数据范围就是全杭州市,所以要用”全市“进行替换,所以输出结果为“【统计全市2023年管线和管廊建设计划的执行率】”。\n"f"例子:\n"f"输入的历史问题列表是: \n"f"时间 2024-6-6,问题是:升序统计杭州市2023年各项目类型下管线项目计划数和计划投资金额\n"f"我最新的问题是:2024年呢\n"f"经过分析发现列表中最新的问题和前面的问题关系有联系,所以经过分析最后总结出来的问题是 “升序统计杭州市2024年各项目类型下管线项目计划数和计划投资金额”, 从问题中可以看出要查询杭州市范围的数据,按照要求我们知道默认数据范围就是全杭州市,所以要用”全市“进行替换,所以输出结果为“【升序统计全市2024年各项目类型下管线项目计划数和计划投资金额】”。\n"f"例子:\n"f"输入的历史问题列表是: \n"f"时间 2024-6-6,问题是:升序查询杭州市2023年权属单位是杭州市政府的管线信息\n"f"我最新的问题是,问题是:2024年呢\n"f"经过分析发现列表中最新的问题和前面的问题关系有联系,所以经过分析最后总结出来的问题是 “升序查询杭州市2024年权属单位是杭州市政府的管线信息”, 从问题中可以看出要查询杭州市范围的数据,按照要求我们知道默认数据范围就是全杭州市,所以要用”全市“进行替换,所以输出结果为“【升序查询全市2024年权属单位是杭州市政府的管线信息】”,我们不对包含“杭州市”或者”杭州“字符串的单位名称进行任何处理。\n"f"\n{history_str}\n,现在我的最新的问题是 “{history[-1]}” ,请严格遵守上述要求并总结出用户的最新问题并给出完整的意图,并简要介绍思考过程。"}]logging.info(f"总结用户最新意图 prompt :{messages}")response = Generation.call(model="qwen-max-0428", messages=messages, result_format='message')resp = response.output.choices[0]['message']['content']logging.info(f"用户最新意图是:{resp}")g = re.search(r"【.*】", resp)if g:resp = g.group().replace("【", "").replace("】", "")save_data(user_data, config)return respreturn ""except Exception as e:logging.info("提取总结最新的问题过程中报错")logging.error(e)return ""

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关文章:

大模型多轮问答的两种方式

前言 大模型的多轮问答难点就是在于如何精确识别用户最新的提问的真实意图,而在常见的使用大模型进行多轮对话方式中,我接触到的只有两种方式: 一种是简单地直接使用 user 和 assistant 两个角色将一问一答的会话内容喂给大模型&#xff0c…...

【无标题】1877A

足球锦标赛中有 n支球队。每对队伍匹配一次。每场比赛结束后,Pak Chanek收到两个整数作为比赛结果,即两队在比赛中得分的数量。一支球队的效率等于本队每场比赛的总进球数减去对手每场比赛的总进球数。 比赛结束后,Pak Dengklek会计算每支球…...

直播美颜工具解析:美颜SDK核心技术与性能优化方法

本篇文章,小编将深入解析直播美颜SDK的核心技术及其性能优化方法,以期为开发者提供有价值的参考。 一、美颜SDK核心技术 1.实时人脸检测与识别 美颜SDK的核心技术之一是实时人脸检测与识别。这项技术基于深度学习算法,能够快速、准确地识别…...

YOLOv10开源,高效轻量实时端到端目标检测新标准,速度提升46%

前言 实时目标检测在自动驾驶、机器人导航、物体追踪等领域应用广泛,近年来,YOLO 系列模型凭借其高效的性能和实时性,成为了该领域的主流方法。但传统的 YOLO 模型通常采用非极大值抑制 (NMS) 进行后处理,这会增加推理延迟&#…...

如何解决访问网站时IP被限制的问题?

在互联网上,用户可能会面临一个令人困扰的问题——当尝试访问某个特定的网站时,却发现自己的IP地址被该网站屏蔽。 IP地址被网站屏蔽是一个相对常见的现象,而导致这种情况的原因多种多样,包括恶意行为、违规访问等。本文将解释IP地…...

springboot城市美发管理系统的设计与实现-计算机毕业设计源码71715

摘 要 信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对城市美发管理系统等问题,对城市…...

微软 Windows 10 22H2 发布可选更新 19045.4474,修复窗口显示问题等

微软今天面向 Windows 10 22H2 版本,发布了 KB5037849 非安全可选更新,用户安装后版本号升至 Build 19045.4474。 IT之家 5 月 30 日消息,微软今天面向 Windows 10 22H2 版本,发布了 KB5037849 非安全可选更新,用户安…...

代码随想录算法训练营第五十三天 | 309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费

309.最佳买卖股票时机含冷冻期 视频讲解:动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期_哔哩哔哩_bilibili代码随想录 解题思路 1. dp[i][0] 第i天持有股票的状态 dp[i][1]第i天不持股的状…...

Polar Web【中等】反序列化

Polar Web【中等】反序列化 Contents Polar Web【中等】反序列化思路&探索EXPPHP生成PayloadGET传递参数 运行&总结 思路&探索 一个经典的反序列化问题,本文采用PHP代码辅助生成序列字符串的方式生成 Payload 来进行手动渗透。 打开站点,分析…...

测试工具链

缺陷管理 bug管理工具 devops---项目管理--缺陷管理 bug管理地址 https://devsecops.mychery.com:8443/chery/project?filterROLE&statusACTIVE bug管理环境 采用公司的devops平台,对每个项目的bug进行管理。目前在使用 接口测试和服务端性能测试 工具…...

【求助】ansible synchronize 问题

求助贴,不是解答贴哈 最近把一台服务器从centos7.9升级到alibaba cloud linux3之后,出现了一个ansible的问题。 版本是ansible8.3.0ansible-core-2.15.3,在使用synchronize模块时,我使用了别名(比如web1)会…...

sql server 把表的所有的null改为0,不要限制某列

DECLARE tableName NVARCHAR(256) Linear -- 替换为你的表名 DECLARE sql NVARCHAR(MAX) SELECT sql UPDATE tableName SET COLUMN_NAME 0 WHERE COLUMN_NAME IS NULL; FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME tableName AND TABLE_SCHEM…...

【C#】WinForm关闭新(二级)界面使主程序关闭

参考视频:https://www.bilibili.com/video/BV1JY4y1G7jo?p14&vd_source1c57ab1b2e551da5b65c0dfb0f05a493 1.背景介绍 主程序界面,点击弹出二级界面(同时隐藏主界面),不做任何设置,这时关闭二级界面…...

光伏电站绘制软件的基本方法

随着可再生能源的快速发展,光伏电站的建设日益受到重视。为了提高光伏电站设计的效率和准确性,光伏电站绘制软件的应用变得至关重要。本文将介绍光伏电站绘制软件的基本方法,包括绘制屋顶、屋脊、障碍物和参照物,铺设光伏板&#…...

【Python】selenium使用find_element时解决【NoSuchElementException】问题的方法

NoSuchElementException 是 Selenium WebDriver 中的一种异常,我们在写selenium.find_element 的时候也比较常见,它会在我们要尝试定位一个不存在的元素时抛出这类错误。 以下是一些解决NoSuchElementException 的常用方法: 检查元素定位器:…...

oracle表锁

--oracle提醒记录被另一个用户锁住: --问题描述:你去修改数据时,报错“ --问题分析:你用select t.*,t.rowid from qxt_logsend_0728修改数据结果集时,计oracle会通过事务锁锁住这个记录,点击记录改变&#…...

父组件调用子组件方法(组合式 API版)

在 Vue 3 中,defineExpose 是一个用于在组合式 API (Composition API) 中暴露组件内部方法或属性的函数。它允许父组件通过 ref 引用子组件实例,并调用子组件暴露的方法或访问其属性。 以下是子组件和父组件如何使用 defineExpose 和 ref 的详细解释和示…...

【动手学深度学习】使用块的网络(VGG)的研究详情

目录 🌊1. 研究目的 🌊2. 研究准备 🌊3. 研究内容 🌍3.1 多层感知机模型选择、欠拟合和过拟合 🌍3.2 练习 🌊4. 研究体会 🌊1. 研究目的 理解块的网络结构;比较块的网络与传统…...

JFinal学习07 控制器——接收数据之getBean()和getModel()

JFinal学习07 控制器——接收数据之getBean()和getModel() 视频来源https://www.bilibili.com/video/BV1Bt411H7J9/?spm_id_from333.337.search-card.all.click 文章目录 JFinal学习07 控制器——接收数据之getBean()和getModel()一、接收数据的类型二、getBean()和getModel()…...

二百三十九、Hive——Hive函数全篇

--创建测试数据库test show databases ; create database if not exists test; use test;一、关系运算 1、等值比较&#xff1a; select 1 where 1 1; --1 select 1 where 0 1; --NULL 2、不等值比较&#xff1a;<> select 1 where 1 <> 2; --1 sele…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...