当前位置: 首页 > news >正文

【机器学习】【遗传算法】【项目实战】药品分拣的优化策略【附Python源码】

仅供学习、参考使用

一、遗传算法简介

遗传算法(Genetic Algorithm, GA)是机器学习领域中常见的一类算法,其基本思想可以用下述流程图简要表示:

(图参考论文:Optimization of Worker Scheduling at Logistics
Depots Using GeneticAlgorithms and Simulated
Annealing)

在这里插入图片描述

一种常见的遗传算法变例是有偏随机密匙遗传算法 (BRKGA: Biased Random Key Genetic Algorithm) ,参考论文:A BIASED RANDOM-KEY GENETIC ALGORITHM WITH VARIABLE MUTANTS TO
SOLVE A VEHICLE ROUTING PROBLEM,算法流程大致如下:
(图参考博客:Pymoo学习 (11):有偏随机密匙遗传算法 (BRKGA: Biased Random Key Genetic Algorithm) 的使用)

在这里插入图片描述

二、项目源码(待进一步完善)

1、导入相关库

import csv
import random
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt

2、药品统计

# 统计zone_id=2110的药品
def screen_goods_id(tote_data, zone):zone_goods_id_lists = []for i in range(len(tote_data)):zone_id = tote_data['区段ID'][i]goods_id = tote_data['产品编号'][i]if zone_id == zone:zone_goods_id_lists.append(goods_id)zone_goods_id_lists = list(set(zone_goods_id_lists))return zone_goods_id_lists

3、货位统计

# 统计zone_id=2110的货位
def generate_locations():index_id_0 = [2173, 2174, 2175, 2176, 2177, 2178, 2179, 2180, 2181]index_id_1 = [1, 2, 3, 4, 5, 6, 7, 8]index_id_2 = [21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45]location_id_data = [f"{aa:04d}{bb:02d}{cc:02d}1" for aa in index_id_0 for bb in index_id_1 for cc in index_id_2]return location_id_data

4、缺失货位统计

# 统计zone_id=2110的缺失货位
def del_locations():index_id_0 = [217408, 217507, 217708, 217807, 218008, 218107]index_id_1 = [22, 23, 24, 25, 32, 33, 34, 35, 42, 43, 44, 45]del_loc_data = [f"{aa:06d}{bb:02d}1" for aa in index_id_0 for bb in index_id_1]return del_loc_data

5、生成可使用货位

# 去除缺失货位,生成最终的可使用货位
def screen_location_id():location_id_data = generate_locations()del_loc_data = del_locations()location_id_lists = [loc_id for loc_id in location_id_data if loc_id not in del_loc_data]return location_id_lists

6、个体(单个基因型)生成

# 生成一个个体
def pop_one_combined(list_1, list_2):  # list1的长度不能大于list2goods_ids_copy = list_1[:]location_ids_copy = list_2[:]combined_list = []for _ in range(len(list_1)):element = random.choice(location_ids_copy)location_ids_copy.remove(element)combined_list.append(element)return combined_list

生成测试:大小为6的一维数组,生成50个个体(种群类似):

list1 = [1, 2, 3, 4, 5, 6]
list2 = [1, 2, 3, 4, 5, 6]# 个体生成测试(批量生成)for i in range(50):print(pop_one_combined(list1, list2))

在这里插入图片描述
7、种群(基因池)生成

# 生成种群
def generate_pop_list(POP_SIZE, zone_goods_id_data, zone_location_id_data):pop_list = []for _ in range(POP_SIZE):pop_individuality = pop_one_combined(zone_goods_id_data, zone_location_id_data)pop_list.append(pop_individuality)return pop_list

生成测试:

# 种群生成测试(样本量50)
print(generate_pop_list(50, list1, list2))

在这里插入图片描述
8、劳累值(特征系数)计算公式

# 拣选劳累值计算公式
def pick_distance_formula(location_id, shelves_num):if location_id[-2] == '4':  # 第4层(最高层)distance = 10 * (int(location_id[0:4]) - 2173) + (shelves_num - 1) * 10 + int(location_id[-3]) + 3else:  # 第1~3层distance = 10 * (int(location_id[0:4]) - 2173) + (shelves_num - 1) * 10 + int(location_id[-3])return distance

9、一组数据的劳累值计算

# 拣选劳累值计算(一组)
def pick_distance_value(location_id):distance = 0shelves_num = int(location_id[4:6])group_1 = [1, 3, 5, 7]group_2 = [2, 4, 6, 8]if shelves_num in group_1:shelves_num = shelves_num // 2 + 1elif shelves_num in group_2:shelves_num = shelves_num // 2distance = pick_distance_formula(location_id, shelves_num)return distance

10、选择优势个体进入下一代

# 选择优胜个体
def select(pop_list, CROSS_RATE, POP_SIZE):index = int(CROSS_RATE * POP_SIZE)  # 一轮筛选后的样本数量return pop_list[0:index]  # 返回前xxx个优胜个体

11、遗传变异机制

# 遗传变异
def mutation(MUTA_RATE, child, zone_goods_id_data, zone_location_id_data):if np.random.rand() < MUTA_RATE:mutation_list = [loc_id for loc_id in zone_location_id_data if loc_id not in child]num = np.random.randint(1, int(len(zone_goods_id_data) * MUTA_RATE))for _ in range(num):index = np.random.randint(0, len(zone_goods_id_data))mutation_list.append(child[index])loc_id = random.choice(mutation_list)child[index] = loc_idreturn child

12、子代中0值的替换

# (子代)0值的替换
def obx_count_run(child, parent):for parent_elemental in parent:if parent_elemental not in child:for i in range(len(child)):if child[i] == 0:child[i] = parent_elementalbreakreturn child

13、基于顺序的交叉方式(Order-Based Crossover, OBX)

# 遗传交叉(交叉算子:基于顺序的交叉(Order-Based Crossover,OBX))
def crossmuta(pop_list, POP_SIZE, MUTA_RATE, zone_goods_id_data, zone_location_id_data):pop_new = []for i in range(len(pop_list)):pop_new.append(pop_list[i][1:])while len(pop_new) < POP_SIZE:parent_1 = random.choice(pop_list)[1:]parent_2 = random.choice(pop_list)[1:]while parent_1 == parent_2:parent_2 = random.choice(pop_list)[1:]child_1 = [0 for _ in range(len(zone_goods_id_data))]child_2 = [0 for _ in range(len(zone_goods_id_data))]for j in range(len(zone_goods_id_data)):genetic_whether = np.random.choice([0, 1])if genetic_whether == 1:child_1[j] = parent_1[j]child_2[j] = parent_2[j]if (child_1 == parent_1) or (child_2 == parent_2):continuechild_1 = obx_count_run(child_1, parent_2)child_1 = mutation(MUTA_RATE, child_1, zone_goods_id_data, zone_location_id_data)child_2 = obx_count_run(child_2, parent_1)child_2 = mutation(MUTA_RATE, child_2, zone_goods_id_data, zone_location_id_data)pop_new.append(child_1)pop_new.append(child_2)return pop_new

14、损失曲线图绘制

# 每轮总拣选劳累值绘制曲线图
def loss_chart(data):y_values = datax_values = list(range(len(y_values)))plt.plot(x_values, y_values)plt.title("zone_2110_pick_distance_loss")plt.xlabel("Iterations")  # 迭代次数plt.ylabel("zone_2110_pick_distance")  # 距离plt.grid()plt.savefig('./JS_zone_2110_pick_distance_loss.png')plt.show()

15、结果合成

# 最终结果合成
def goods_location_data_consolidation(zone_goods_id_data, zone_goods_location_id_data):goods_location_data = []for i in range(len(zone_goods_id_data)):goods_location_data.append([zone_goods_id_data[i], zone_goods_location_id_data[i]])return goods_location_data

主函数及运行:

def main():list1 = [1, 2, 3, 4, 5, 6]list2 = [1, 2, 3, 4, 5, 6]# 个体生成测试(批量生成)for i in range(50):print(pop_one_combined(list1, list2))# 种群生成测试(样本量50)print(generate_pop_list(50, list1, list2))print("Genetic algorithm run start")print(f"start_time --> {datetime.now()}")zone_2110_pick_distance = []tote_goods_data_2403 = pd.read_csv('./tote_goods_data_2024_03.csv')  # 读取数据集POP_SIZE = 20  # 种群大小CROSS_RATE = 0.9  # 交叉率MUTA_RATE = 0.05  # 变异率Iterations = 10  # 迭代次数zone_2110_goods_id_lists = screen_goods_id(tote_goods_data_2403, 2110)zone_2110_location_id_lists = screen_location_id()POP = generate_pop_list(POP_SIZE, zone_2110_goods_id_lists, zone_2110_location_id_lists)for i in range(Iterations):POP = getfitness(POP, 2110, tote_goods_data_2403, zone_2110_goods_id_lists)POP = select(POP, CROSS_RATE, POP_SIZE)zone_2110_pick_distance.append(POP[0][0])POP = crossmuta(POP, POP_SIZE, MUTA_RATE, zone_2110_goods_id_lists, zone_2110_location_id_lists)loss_chart(zone_2110_pick_distance)Updated_goods_location_data = goods_location_data_consolidation(zone_2110_goods_id_lists, POP[0])with open('./zone_2110_goods_location_data.csv', 'w', newline='') as csvfile:writer = csv.writer(csvfile)writer.writerow(['goods_id', 'location_id'])for row in Updated_goods_location_data:writer.writerow(row)print(f"end_time --> {datetime.now()}")print("Genetic algorithm run end")if __name__ == "__main__":main()

三、算法测试

1、pop_size=20, iterations=10
cross_rate=0.5, muta_rate=0.05:
在这里插入图片描述
交叉率不变,增加变异率到0.1:

在这里插入图片描述

交叉率不变,增加变异率到0.2:

在这里插入图片描述

变异率不变,增加交叉率到0.9:

在这里插入图片描述

2、在另一个数据集上进行测试

采用初始参数设定:
在这里插入图片描述

交叉率提高至0.9:
在这里插入图片描述

四、算法优化

GA(遗传)算法优化可行性分析

一、优化算法核心步骤参数

GA(Genetic Algorithm,遗传算法)的主要流程可以用下图进行简要描述:

在初始化阶段,需要确定imax(最大迭代次数)的值用于主循环的迭代。除这个值外,在算法的“交叉”步骤中,需要确定交叉方法(常用的交叉方法包括单点交叉、两点交叉、多点交叉、部分匹配交叉、均匀交叉、顺序交叉、基于位置的交叉、基于顺序的交叉、循环交叉、子路径交换交叉等),并指定参数cross_rate(交叉率)的值;在“变异”步骤中,需要指定参数muta_rate(变异率)的值;在“适应度计算”步骤中,需要自定义适应度(fitness)计算公式。故而可以进行优化的参数包括:
(1)最大迭代次数;
(2)交叉方法;(待验证)
(3)交叉率;
(4)变异率;(结论:提高变异率可以显著提高损失函数的收敛速度)
(5)适应度计算公式(涉及到按比例缩放的问题)。可能的策略:使用二次或者高次函数?如何提高损失函数的收敛速度?

二、采用GA的常见变式

上述流程图为GA的最基本的形式(基础GA),常见的优化变式包括:
(1)GA+SA——遗传算法结合模拟退火(Simulated Annealing)算法;
见论文:《Optimization of Worker Scheduling at Logistics
Depots Using Genetic Algorithms and Simulated
Annealing》
(2)AQDE(Adaptive Quantum Differential Evolution)算法(适应性量子差分进化算法);
见论文:《Z. Sun, Z. Tian, X. Xie, Z. Sun, X. Zhang, and G. Gong, “An metacognitive based logistics human resource modeling and optimal
scheduling,”》
(3)BRKGA(Biased Random-Key Genetic Algorithm)算法(有偏随机密钥遗传算法);
见论文:《A Biased Random-Key Genetic Algorithm With Variable Mutants To Solve a Vehicle Routing Problem》

三、结合深度学习或者强化学习

todo

四、其他可行方法

其他可行方法主要包括:
(1)向量化(vectorization);
(2)多线程(multithreading);
(3)并行计算(multiprocessing);
(4)带缓存的多级计算(cached computation)。

并行计算方面,可以使用Python中的joblib库:

相关文章:

【机器学习】【遗传算法】【项目实战】药品分拣的优化策略【附Python源码】

仅供学习、参考使用 一、遗传算法简介 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是机器学习领域中常见的一类算法&#xff0c;其基本思想可以用下述流程图简要表示&#xff1a; &#xff08;图参考论文&#xff1a;Optimization of Worker Scheduling at Logi…...

电子电气架构 ---车载安全防火墙

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...

解决selenium加载网页过慢影响程序运行时间的问题

在用selenium爬取动态加载网页时&#xff0c;发现网页内容都全部加载完了&#xff0c;但是页面还在转圈&#xff0c;并且获取页面内容的代码也没有执行&#xff0c;后面了解到selenium元素操作等方法是需要等待页面所有元素完全加载完成后才开始执行的&#xff0c;所以在页面未…...

何为云防护?有何作用

云防护又称云防御。随着Internet互联网络带宽的增加和多种DDOS 黑客工具的不断发布&#xff0c;云计算越演越热&#xff0c;DDOS拒绝服务攻击的实施越来越容易&#xff0c;DDOS攻击事件正在成上升趋势。出于商业竞争、打击报复和网络敲诈等多种因素&#xff0c;导致很多IDC 托管…...

2024050402-重学 Java 设计模式《实战责任链模式》

重学 Java 设计模式&#xff1a;实战责任链模式「模拟618电商大促期间&#xff0c;项目上线流程多级负责人审批场景」 一、前言 场地和场景的重要性 射击&#x1f3f9;需要去靶场学习、滑雪&#x1f3c2;需要去雪场体验、开车&#x1f697;需要能上路实践&#xff0c;而编程…...

centos7安装字体

1.安装命令 yum install fontconfig #字体库命令 yum install mkfontscale #更新字体命令2.安装字体&#xff08;注意权限问题&#xff09; 进入目录 /usr/share/fonts &#xff0c;该目录是 centos7 字体库的默认安装目录。在该目录下创建一个文件夹 ekp &#xff08;名字…...

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(三)为 ReFT 微调准备模型及数据集

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…...

学习Canvas过程中2D的方法、注释及感悟一(通俗易懂)

1.了解Canvas&#xff1a; Canvas是前端一个很重要的知识点&#xff0c;<canvas>标签用于创建画布绘制图形&#xff0c;通过JavaScript进行操作。它为开发者提供一个动态绘制图形的区域&#xff0c;用于创建图标、游戏动画、图像处理等。 对于能够熟练使用Canvas的开发者…...

《TCP/IP网络编程》(第十三章)多种I/O函数(2)

使用readv和writev函数可以提高数据通信的效率&#xff0c;它们的功能可以概括为**“对数据进行整合传输及发送”**。 即使用writev函数可以将分散在多个缓冲中的数据一并发送&#xff0c;使用readv函数可以由多个缓冲分别接受&#xff0c;所以适当使用他们可以减少I/O函数的调…...

Java集合汇总

Java中的集合框架是Java语言的核心部分&#xff0c;提供了强大的数据结构来存储和操作对象集合。集合框架位于java.util包中&#xff0c;主要可以分为两大类&#xff1a;Collection&#xff08;单列集合&#xff09;和Map&#xff08;双列集合&#xff09;。下面是对它们的总结…...

度小满金融大模型的应用创新

XuanYuan/README.md at main Duxiaoman-DI/XuanYuan GitHub...

Android WebView上传文件/自定义弹窗技术,附件的解决方案

安卓内核开发 其实是Android的webview默认是不支持<input type"file"/>文件上传的。现在的前端页面需要处理的是&#xff1a; 权限 文件路径AndroidManifest.xml <uses-permission android:name"android.permission.WRITE_EXTERNAL_STORAGE"/&g…...

selenium 输入框、按钮,输入点击,获取元素属性等简单例子

元素操作 nput框 输入send_keys&#xff0c; input框 清除clear()&#xff0c; 按钮 点击click() 按钮 提交submit() 获取元素 tag_name、 class属性值、 坐标尺寸 """ input框 输入1次&#xff0c;再追加输入一次&#xff0c; 清除&#xff0c; 再重新输入&…...

结构体构造函数

【知识点&#xff1a;结构体构造函数】下面两段代码等价。 &#xff08;1&#xff09;结构体构造函数写法 struct LinkNode {int data;LinkNode* next;LinkNode(int x):data(x),next(NULL) {} }; LinkNode* Lnew LinkNode(123); &#xff08;2&#xff09;非结构体构造函数写…...

基于单片机的电子万年历设计

摘要: 本设计以 AT89C51 单片机为主控器,使用 DS1302 时钟芯片、DS18B20 温度芯片、LCD1602 显示模块,利用Proteus 仿真软件和 Keil 编译软件进行了基于单片机的电子万年历仿真,设计的万年历可以在液晶上显示时间,同时还具有时间校准、温度显示等功能。 关键词 :单片机…...

大厂真实面试题(一)

滴滴大数据sql 取出累计值与1000差值最小的记录 1.题目 已知有表t_cost_detail包含id和money两列,id为自增,请累加计算money值,并求出累加值与1000差值最小的记录。 2.分析 本题主要是想找到累加值域1000差距最小的记录,也就是我们要对上述按照id进行排序并且累加,并…...

Docker搭建ELKF日志分析系统

Docker搭建ELKF日志分析系统 文章目录 Docker搭建ELKF日志分析系统资源列表基础环境一、系统环境准备1.1、创建所需的映射目录1.2、修改系统参数1.3、单击创建elk-kgc网络桥接 二、基于Dockerfile构建Elasticsearch镜像2.1、创建Elasticsearch工作目录2.2、上传资源到指定工作路…...

把系统引导做到U盘,实现插上U盘才能开机

前言 有个小伙伴提出了这样一个问题&#xff1a;能不能把U盘制作成电脑开机的钥匙&#xff1f; 小白稍微思考了一下&#xff0c;便做了这样一个回复&#xff1a;可以。 至于为什么要思考一下&#xff0c;这样会显得我有认真思考他提出的问题。 Windows7或以上系统均支持UEF…...

【计算机网络基础知识】

首先举一个生活化的例子&#xff0c;当你和朋友打电话时&#xff0c;你可能会使用三次握手和四次挥手的过程进行类比&#xff1a; 三次握手&#xff08;Three-Way Handshake&#xff09;&#xff1a; 你打电话给朋友&#xff1a;你首先拨打你朋友的电话号码并等待他接听。这就…...

个股场外期权个人如何参与买卖?

个股场外期权作为一种金融衍生品&#xff0c;为个人投资者提供了多样化的投资选择和风险管理工具。想要参与个股场外期权的买卖&#xff0c;以下是一些关键步骤和考虑因素。 文章来源/&#xff1a;财智财经 第一步&#xff1a;选择合适的金融机构 首先&#xff0c;个人投资者需…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...