当前位置: 首页 > news >正文

神经网络 torch.nn---Non-Linear Activations (ReLU)

ReLU — PyTorch 2.3 documentation

torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io)

非线性变换的目的

  • 非线性变换的目的是为神经网络引入一些非线性特征,使其训练出一些符合各种曲线或各种特征的模型。

  • 换句话来说,如果模型都是直线特征的话,它的泛化能力会不够好

torch.nn.ReLU

torch.nn.ReLU(inplace=False)torch.nn.modules.activation — PyTorch 2.3 documentation

inplace参数:

  • inplace=True,则会自动替换输入时的变量参数。如:input=-1,ReLU(input,implace=True),那么输出后,input=output=0

  • inplace=True,则不替换输入时的变量参数。如:input=-1,ReLU(input,implace=True),那么输出后,input=-1,output=0

作用:

  • input <= 0, output = 0
  • input  >  0,   output = input

计算公式:

程序代码:

示例1:

import torch
from torch import nn
from torch.nn import ReLUinput =torch.tensor([[1, -0.5],[-1, 3]
])
print(input.shape)input = torch.reshape(input,(-1,1,2,2))
print(input.shape)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.relu1 = ReLU()  #inplace bool   原数据是否被替换def forward(self, input):output = self.relu1(input)return outputtudui = Tudui()
output = tudui(input)
print(output)

输出:

示例2:

import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)
# shuffle 是否打乱   False不打乱
# drop_last 最后一轮数据不够时,是否舍弃 true舍弃class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.sigmoid1 = Sigmoid()  #inplace bool   原数据是否被替换def forward(self, input):output = self.sigmoid1(input)return outputtudui = Tudui()
step = 1
writer = SummaryWriter('logs')
for data in dataloader:imgs, targets = datawriter.add_images('inputs',imgs,step)outputs = tudui(imgs)writer.add_images("outputs",outputs,step)step += 1writer.close()

在TensorBoard上看输出内容:

相关文章:

神经网络 torch.nn---Non-Linear Activations (ReLU)

ReLU — PyTorch 2.3 documentation torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io) 非线性变换的目的 非线性变换的目的是为神经网络引入一些非线性特征&#xff0c;使其训练出一些符合各种曲线或各种特征的模型。 换句话来说&#xff0c;如果模型都是直线特征的…...

【微服务】使用kubekey部署k8s多节点及kubesphere

kubesphere官方部署文档 https://github.com/kubesphere/kubesphere/blob/master/README_zh.md kubuctl命令文档 https://kubernetes.io/zh-cn/docs/reference/kubectl/ k8s资源类型 https://kubernetes.io/zh-cn/docs/reference/kubectl/#%E8%B5%84%E6%BA%90%E7%B1%BB%E5%9E…...

目标检测数据集 - 垃圾桶满溢检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍&#xff1a;垃圾桶满溢检测数据集&#xff0c;真实场景高质量图片数据&#xff0c;涉及场景丰富&#xff0c;比如城市道边垃圾桶满溢、小区垃圾桶满溢、社区垃圾桶满溢、农村道边垃圾桶满溢、垃圾集中处理点垃圾桶满溢、公园垃圾桶满溢数据等。数据集标注标签划分为…...

6.9总结(省赛排位赛1)

省赛排位赛1省赛排名赛1 - Virtual Judge (vjudge.net) 思路&#xff1a; 其实就是一个斐波拉契数列&#xff0c;当前项前两项之和&#xff0c;先将范围内的数全部存起来放进一个数组&#xff0c;再进行累加查询 代码&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #incl…...

58.CountdownLatch

用来进行线程同步协作,等待所有线程完成倒计时。 构造参数用来初始化等待计数值,await方法用来等待计数归零,countDown方法用来让计数减一。 CountdownLatch普通使用 @Slf4j public class CountdownLatchDemo {public static void main(String[] args) {CountDownLatch c…...

Java数据结构准备工作---常用类

文章目录 前言1.包装类1.1.包装类基本知识1.2.包装类的用途1.3.装箱和拆箱1.3.1.装箱&#xff1a;1.3.2.拆箱 1.4 包装类的缓存问题 2.时间处理类2.1.Date 时间类(java.util.Date)2.2.DateFormat 类和 SimpleDateFormat 类2.3.Calendar 日历类 3.其他常用类3.1.Math类3.2.Rando…...

SD 使用教程

SD 换脸步骤 使用Stable Diffusion (SD) 进行换脸的基本步骤可以从以下几个方面概述&#xff0c;这里以一种常见的方式为例&#xff0c;结合了插件的使用来简化流程&#xff1a; 准备工作 安装必要的软件和插件&#xff1a;首先&#xff0c;确保你已经安装了Stable Diffusion…...

Sylar---协程调度模块

协程调度模块&#xff1a; 首先是协程任务类FiberAndThread,包括协程&#xff0c;函数&#xff0c;指定的线程&#xff1b;提供了五个构造函数&#xff0c;只传协程的智能指针&#xff0c;只传函数对象&#xff0c;传协程智能指针的指针&#xff0c;函数对象指针&#xff0c;还…...

iOS Hook 崩溃

0x00 崩溃重现 被 Hook 的类&#xff0c;是这样的&#xff1a; interface ViewController : UIViewController endimplementation ViewController - (void)loadView {[super loadView];NSLog("%s", __func__); }- (void)test {NSLog("%s", __func__); }-…...

区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现LSTM-ABKDE长…...

linux内核下rapidio(TSI721)相关笔记汇总

1 驱动的安装 和 主要功能(doorbell, DMA, rionet)的简单测试 linux5.4 下使用rapidio(tsi721)的笔记记录_kernel-rapidio-CSDN博客 2 机理分析 linux内核下&#xff0c;rapidio网络系统建立的过程(枚举 和 发现)_linux rapidio-CSDN博客 linux内核下&#xff0c;(rapidio)T…...

从GPT-4到GPT-4o:人工智能的进化与革命

从GPT-4到GPT-4o&#xff1a;人工智能的进化与革命 近期&#xff0c;OpenAI推出了最新版本的人工智能模型——GPT-4o&#xff0c;引发了广泛的关注和讨论。在这篇文章中&#xff0c;我们将对GPT-4o进行全面评价&#xff0c;包括与前一版本GPT-4的对比分析&#xff0c;GPT-4o的…...

【Java】/*抽象类和接口*/

目录 一、抽象类和抽象方法 1.1 概念 1.2 特性 1.3 作用 二、接口 2.1 概念及定义 2.2 特性 2.3 实例&#xff1a;笔记本电脑 2.4 一个类可以实现多个接口 2.5 一个接口可以继承多个接口 2.6 Comparable接口 2.7 Comparator接口 2.8 Cloneable接口 2.9 浅拷贝和深…...

TCP/IP协议介绍——三次握手四次挥手

TCP/IP&#xff08;Transmission Control Protocol/Internet Protocol&#xff0c;传输控制协议/网际协议&#xff09;是指能够在多个不同网络间实现信息传输的协议簇。TCP/IP协议不仅仅指的是TCP 和IP两个协议&#xff0c;而是指一个由FTP、SMTP、TCP、UDP、IP等协议构成的协议…...

[C++]基于C++opencv结合vibe和sort tracker实现高空抛物实时检测

【vibe算法介绍】 ViBe算法是一种高效的像素级视频背景建模和前景检测算法。以下是对该算法的详细介绍&#xff1a; 一、算法原理 ViBe算法的核心思想是通过为每个像素点存储一个样本集&#xff0c;利用该样本集与当前像素值进行比较&#xff0c;从而判断该像素是否属于背景…...

Apache Doris 基础 -- 数据表设计(模式更改)

用户可以通过schema Change操作修改现有表的模式。表的模式主要包括对列的修改和对索引的修改。这里我们主要介绍与列相关的Scheme更改。对于与索引相关的更改&#xff0c;可以查看数据表设计/表索引&#xff0c;查看每个索引的更改方法。 1、术语 基本表&#xff08;Base Ta…...

【机器学习】【遗传算法】【项目实战】药品分拣的优化策略【附Python源码】

仅供学习、参考使用 一、遗传算法简介 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是机器学习领域中常见的一类算法&#xff0c;其基本思想可以用下述流程图简要表示&#xff1a; &#xff08;图参考论文&#xff1a;Optimization of Worker Scheduling at Logi…...

电子电气架构 ---车载安全防火墙

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...

解决selenium加载网页过慢影响程序运行时间的问题

在用selenium爬取动态加载网页时&#xff0c;发现网页内容都全部加载完了&#xff0c;但是页面还在转圈&#xff0c;并且获取页面内容的代码也没有执行&#xff0c;后面了解到selenium元素操作等方法是需要等待页面所有元素完全加载完成后才开始执行的&#xff0c;所以在页面未…...

何为云防护?有何作用

云防护又称云防御。随着Internet互联网络带宽的增加和多种DDOS 黑客工具的不断发布&#xff0c;云计算越演越热&#xff0c;DDOS拒绝服务攻击的实施越来越容易&#xff0c;DDOS攻击事件正在成上升趋势。出于商业竞争、打击报复和网络敲诈等多种因素&#xff0c;导致很多IDC 托管…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...