当前位置: 首页 > news >正文

支持向量机

支持向量机(SVM)

支持向量机(Support Vector Machine, SVM)是一种用于分类和回归任务的监督学习算法。SVM 的核心思想是找到一个最优的决策边界(或称为超平面),以最大化不同类别之间的间隔。以下是对支持向量机的详细介绍,包括其基本概念、工作原理、主要特点、优缺点及应用场景。

基本概念

1. 超平面(Hyperplane)

在n维空间中,超平面是一个n-1维的子空间,用于将不同类别的数据分开。在二维空间中,超平面是一个直线;在三维空间中,超平面是一个平面。

2. 支持向量(Support Vectors)

支持向量是离决策边界最近的数据点,这些点在确定决策边界时起关键作用。决策边界由这些支持向量决定,而与其他数据点无关。

3. 间隔(Margin)

间隔是指到最近的支持向量的距离。SVM 通过最大化间隔来找到最优的决策边界,以提高模型的泛化能力。

工作原理

  1. 线性可分数据 对于线性可分的数据,SVM 寻找一个线性超平面,将不同类别的数据完全分开,并且最大化间隔。

  2. 线性不可分数据 对于线性不可分的数据,SVM 通过引入软间隔(Soft Margin)和惩罚参数(C),允许一些数据点位于错误的一侧,来找到最优的决策边界。

  3. 非线性数据 对于非线性数据,SVM 通过核函数(Kernel Function)将数据映射到高维空间,使得在高维空间中数据线性可分。常用的核函数包括:

    • 线性核(Linear Kernel)
    • 多项式核(Polynomial Kernel)
    • 径向基核(RBF Kernel)
    • 高斯核(Gaussian Kernel)

主要特点

  1. 最大化间隔 SVM 通过最大化不同类别之间的间隔,提高了模型的泛化能力和鲁棒性。

  2. 支持向量 决策边界仅由支持向量决定,减少了对训练数据的依赖,提高了模型的计算效率。

  3. 核技巧 通过核函数将数据映射到高维空间,使得 SVM 能够处理非线性分类问题,增强了模型的灵活性。

优缺点

优点
  1. 高效性 SVM 在高维空间中表现良好,适用于复杂的数据集。

  2. 鲁棒性 通过最大化间隔,SVM 能够有效防止过拟合,提高模型的泛化能力。

  3. 灵活性 核函数使得 SVM 能够处理线性和非线性问题,应用范围广泛。

  4. 少量数据依赖 仅使用支持向量来确定决策边界,减少了对训练数据的依赖,提升了计算效率。

缺点
  1. 计算复杂度 对于大规模数据集,SVM 的训练时间较长,计算复杂度较高。

  2. 参数选择 SVM 的性能对核函数和参数(如惩罚参数 C 和核参数)非常敏感,选择合适的参数较为复杂。

  3. 难以解释 特别是使用非线性核函数时,模型的决策边界难以直观解释。

应用场景

  1. 文本分类 SVM 常用于垃圾邮件过滤、情感分析、新闻分类等文本分类任务。

  2. 图像分类 在图像分类中,SVM 能够有效地处理高维图像特征,实现高精度分类。

  3. 生物信息学 SVM 应用于基因表达数据分析、蛋白质分类等生物信息学领域,表现优异。

  4. 金融预测 在金融市场中,SVM 用于股票价格预测、信用评分等任务,提供可靠的预测结果。

  5. 医学诊断 SVM 被广泛应用于医学图像分析、疾病预测等医疗领域,辅助医生进行诊断。

总结

支持向量机是一种强大的监督学习算法,能够有效地处理分类和回归任务。通过最大化间隔和支持向量的使用,SVM 提高了模型的泛化能力和计算效率。核函数的引入使得 SVM 具备处理非线性问题的能力,增强了模型的灵活性。尽管 SVM 存在计算复杂度高和参数选择复杂等问题,但其在文本分类、图像分类、生物信息学、金融预测和医学诊断等领域的广泛应用,证明了其强大的适用性和可靠性。

相关文章:

支持向量机

支持向量机(SVM) 支持向量机(Support Vector Machine, SVM)是一种用于分类和回归任务的监督学习算法。SVM 的核心思想是找到一个最优的决策边界(或称为超平面),以最大化不同类别之间的间隔。以…...

Kafka 架构

1 整体架构 1.1 Zookeeper Zookeeper 是一个分布式协调服务,用于管理 Kafka 的元数据。它负责维护 Kafka 集群的配置信息、Broker 列表和分区的 Leader 信息。 Zookeeper 确保了 Kafka 集群的高可用性和可靠性。 但 Zookeeper 已经成为 Kafka 性能瓶颈,…...

iOS 查看runtime源码的几种方法

目录 前言 查看runtime 源码方法 1.下载 Apple 官方提供的源代码 2.通过 GitHub 访问镜像 3.使用命令行工具查看 4.示例 前言 这篇博客主要介绍了查看iOS runtime源代码的方法。 查看runtime 源码方法 查看iOS runtime源码的方法包括以下几个步骤: 1.下载 A…...

底板外设倒灌到处理器分析

在嵌入式系统中,底板外设通常与处理器通过各种接口(如UART、SPI、I2C、GPIO等)进行连接。这些外设可能包括传感器、执行器、存储器、通信模块等。倒灌是指当外设向处理器提供的信号电平超出了处理器能够接受的范围,导致处理器无法…...

使用贝塞尔曲线实现一个iOS时间轴

UI效果 实现的思路 就是通过贝塞尔曲线画出时间轴的圆环的路径,然后 使用CAShaper来渲染UI,再通过 animation.beginTime [cilrclLayer convertTime:CACurrentMediaTime() fromLayer:nil] circleTimeOffset 来设置每个圆环的动画开始时间, …...

【深度学习】深度学习之巅:在 CentOS 7 上打造完美Python 3.10 与 PyTorch 2.3.0 环境

【深度学习】深度学习之巅:在 CentOS 7 上打造完美Python 3.10 与 PyTorch 2.3.0 环境 大家好 我是寸铁👊 总结了一篇【深度学习】深度学习之巅:在 CentOS 7 上打造完美Python 3.10 与 PyTorch 2.3.0 环境✨ 喜欢的小伙伴可以点点关注 &#…...

在docker容器中使用gdb调试python3.11的进程

gdb调试python进程的前提条件 安装python及python调试信息安装gdb工具安装python-gdb.py扩展 安装过程 我们使用docker来安装以上内容,Dockerfile文件内容如下: FROM docker.io/centos:7.4.1708# 安装依赖 RUN yum install -y -q epel-release &…...

堆排序要点和难点以及具体案例应用

堆排序(Heap Sort)是一种基于堆数据结构的排序算法。下面我将以分点表示和归纳的方式,结合相关数字和信息,详细描述堆排序的PTA(Programming and Testing Approach,编程与测试方法)。 1. 堆排序原理 堆排序是一种树形选择排序,利用了完全二叉树的性质,通过构建最大堆…...

pyspark中使用mysql jdbc报错java.lang.ClassNotFoundException: com.mysql.jdbc.Driver解决

报错信息: py4j.protocol.Py4JJavaError: An error occurred while calling o33.load. : java.lang.ClassNotFoundException: com.mysql.jdbc.Driver 我的解决方法: 这个报错就是提示你找不到jar包,所以你需要去下载一个和你mysql版本匹配的j…...

对称加密系统解析

目录​​​​​​​ 1.概述 2. 对称密码类型 3. 对称加密优缺点 4. 对称加密算法 4.1 DES 4.2 3DES 4.3 AES ​​​​​​4.4 SM1 4.5 SM4 1.概述 对称加密,是指在加密和解密时使用同一秘钥的方式。秘钥的传送和保存的保护非常重要,务必不要让秘…...

初识 java 2

1. idea 的调试 1. 点击鼠标左键设置断点 2.运行到断点处 点击 或点击鼠标右键,再点击 使代码运行到断点处,得到 2. 输出到控制台 System.out.println(value);//输出指定的内容,并换行 value 要打印的内容System.out.print(value);…...

云端狂飙:Django项目部署与性能优化的极速之旅

Hello,我是阿佑,这次阿佑将手把手带你亲自踏上Django项目从单机到云端的全过程,以及如何通过Docker实现项目的无缝迁移和扩展。不仅详细介绍了Docker的基本概念和操作,还深入探讨Docker Compose、Swarm和Kubernetes等高级工具的使…...

GDPU JavaWeb 大结局篇(持续更新中)

GDPUJavaWeb程序设计复习,习题集,重点知识总结,一篇就够了。 实验复习 JavaWeb代码复习,在专栏也可查阅。 课后巩固习题 1 【单选题】下列说法正确的是( D ) A、在B/S结构中,结果应用软件发生了改变,就必须通知所有的客户端重新…...

Linux系统信息的查看

目录 前言一、系统环境二、查看系统IP地址信息2.1 ifconfig命令2.2 ip address命令 三、查看系统端口信息3.1 nmap命令3.2 netstat命令 四、查看系统进程信息4.1 ps命令4.2 kill命令 五、查看系统监控信息5.1 top命令5.2 df命令iostat命令5.3 sar命令 总结 前言 本篇文章介绍查…...

LE Audio音频广播新功能Auracast介绍

LE Audio音频广播新功能Auracast介绍 /*! \copyright Copyright (c) 2019-2022 Qualcomm Technologies International, Ltd. All Rights Reserved. Qualcomm Technologies International, Ltd. Confidential and Proprietary. \file audio_sources.h \defgroup audio_so…...

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割:从训练到部署 1.模型介绍1.1 YOLOv5结构1.2 YOLOv5 推理时间 2.构建数据集2.1 使用labelme标注数据集2.2 生成coco格式label2.3 coco格式转yolo格式 3.训练3.1 整理数据集3.2 修改配置文件3.3 执行代码进行训练 4.使用OpenCV进行c部署参考文…...

【设计模式】行为型设计模式之 策略模式学习实践

介绍 策略模式(Strategy),就是⼀个问题有多种解决⽅案,选择其中的⼀种使⽤,这种情况下我们 使⽤策略模式来实现灵活地选择,也能够⽅便地增加新的解决⽅案。⽐如做数学题,⼀个问题的 解法可能有…...

lua中大数相乘的问题

math.maxinteger * 2 --> -2 原因:math.maxinteger的二进制 : 0111111111111111111111111111111111111111111111111111111111111111 往左移位,最右加一个0,是 1111111111111111111111111111111111111111111111111111111111111…...

第一个SpringBoot项目

目录 💭1、新建New Project IDEA2023版本创建Sping项目只能勾选17和21,却无法使用Java8?🌟 2、下载JDK 17🌟 💭2、项目创建成功界面 1、目录 🌟 2、pom文件🌟 💭3、…...

Android 10.0 Launcher修改density禁止布局改变功能实现

1.前言 在10.0的系统rom定制化开发中,在关于Launcher3的定制化功能中,在有些功能需要要求改变系统原有的density屏幕密度, 这样就会造成Launcher3的布局变化,所以就不符合要求,接下来就来看下如何禁止改变density造成Launcher3布局功能 改变的实现 2.Launcher修改densit…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...