当前位置: 首页 > news >正文

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割:从训练到部署

  • 1.模型介绍
  • 1.1 YOLOv5结构
    • 1.2 YOLOv5 推理时间
  • 2.构建数据集
    • 2.1 使用labelme标注数据集
    • 2.2 生成coco格式label
    • 2.3 coco格式转yolo格式
  • 3.训练
    • 3.1 整理数据集
    • 3.2 修改配置文件
    • 3.3 执行代码进行训练
  • 4.使用OpenCV进行c++部署
  • 参考文献

1.模型介绍

1.1 YOLOv5结构

SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode论文中给出了yolov5的结构框图:
在这里插入图片描述
SPPF块与传统的SPP之间的差异:
在这里插入图片描述

特征融合的几种结构:
在这里插入图片描述
YOLOV5的特征融合结构:
在这里插入图片描述

Ultralytics YOLOv5 Architecture 官方文档给出的详细的整体架构如下:
在这里插入图片描述

1.2 YOLOv5 推理时间

YOLOv5 CPU Export Benchmarks 给出的CPU推断时间:

benchmarks: weights=yolov5s.pt, imgsz=640, batch_size=1, data=/usr/src/app/data/coco128.yaml, device=, half=False, test=False, pt_only=False
Checking setup...
YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cpu CPU
Setup complete ✅ (96 CPUs, 1007.7 GB RAM, 1948.4/3519.3 GB disk)Benchmarks complete (128.39s)Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                56.52
1             TorchScript        0.4623                59.21
2                    ONNX        0.4623                60.95
3                OpenVINO        0.4623                27.44
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                70.84
7     TensorFlow GraphDef        0.4623                72.44
8         TensorFlow Lite        0.4623               130.43
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

https://learnopencv.com/custom-object-detection-training-using-yolov5/给出的时间:在这里插入图片描述

2.构建数据集

参考labelme+yolov5实例分割:自定义数据集制作、训练与注意点,使用labelme来构建yolov5支持的数据集。

2.1 使用labelme标注数据集

pip安装labelme,打开目录进行标注。

2.2 生成coco格式label

使用位于labelme-main\examples\instance_segmentation目录下的labelme2coco.py文件。

python  labelme2coco.py labelme标注json文件夹  coco目标文件夹 --labels labels.txt路径

查看设置的生成目录,存在以下三个文件:
在这里插入图片描述

2.3 coco格式转yolo格式

使用官方提供的转换工具 general_json2yolo.py :

代码中稍加修改2出:

  • 修改1
if __name__ == "__main__":source = "COCO"if source == "COCO":convert_coco_json("../datasets/coco/annotations",  # directory with *.jsonuse_segments=True,cls91to80=True,)

改为:

if __name__ == "__main__":source = "COCO"if source == "COCO":convert_coco_json("上一步生成的coco文件目录",  # directory with *.jsonuse_segments=True,cls91to80=False,# 这里修改成False)
  • 修改2
    在这里插入图片描述
    修改为:
            # Writewith open((fn / f[11:]).with_suffix(".txt"), "a") as file: #去掉字符串的父路径for i in range(len(bboxes)):line = (*(segments[i] if use_segments else bboxes[i]),)  # cls, box or segmentsfile.write(("%g " * len(line)).rstrip() % line + "\n")

运行

转换后的结果位于此文件同目录下的new_dir文件夹/labels/annotations目录中。一张图片对应一个txt文件。

3.训练

3.1 整理数据集

将上面环节生成的数据集保存成以下层次:

datasetimagestrainvallabelstrainval

3.2 修改配置文件

在git主目录下的data文件夹下新建或者修改自定义项目的数据集配置文件:

path:数据集目录
train:训练集目录
val:验证集目录# Classes 
names:0: cat11: cat2...

3.3 执行代码进行训练

python segment/train.py --model yolov5s-seg.pt --data data/custom.yaml --epochs 5 --img 640

4.使用OpenCV进行c++部署

https://github.com/doleron/yolov5-opencv-cpp-python/tree/main

参考文献

[1] https://learnopencv.com/custom-object-detection-training-using-yolov5/
[2] YOLOv5 CPU Export Benchmarks
[3] https://github.com/ultralytics/yolov5/releases
[4] https://sh-tsang.medium.com/brief-review-yolov5-for-object-detection-84cc6c6a0e3a
[5] Ultralytics YOLOv5 Architecture
[6] SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
[7] labelme+yolov5实例分割:自定义数据集制作、训练与注意点

相关文章:

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割:从训练到部署 1.模型介绍1.1 YOLOv5结构1.2 YOLOv5 推理时间 2.构建数据集2.1 使用labelme标注数据集2.2 生成coco格式label2.3 coco格式转yolo格式 3.训练3.1 整理数据集3.2 修改配置文件3.3 执行代码进行训练 4.使用OpenCV进行c部署参考文…...

【设计模式】行为型设计模式之 策略模式学习实践

介绍 策略模式(Strategy),就是⼀个问题有多种解决⽅案,选择其中的⼀种使⽤,这种情况下我们 使⽤策略模式来实现灵活地选择,也能够⽅便地增加新的解决⽅案。⽐如做数学题,⼀个问题的 解法可能有…...

lua中大数相乘的问题

math.maxinteger * 2 --> -2 原因:math.maxinteger的二进制 : 0111111111111111111111111111111111111111111111111111111111111111 往左移位,最右加一个0,是 1111111111111111111111111111111111111111111111111111111111111…...

第一个SpringBoot项目

目录 💭1、新建New Project IDEA2023版本创建Sping项目只能勾选17和21,却无法使用Java8?🌟 2、下载JDK 17🌟 💭2、项目创建成功界面 1、目录 🌟 2、pom文件🌟 💭3、…...

Android 10.0 Launcher修改density禁止布局改变功能实现

1.前言 在10.0的系统rom定制化开发中,在关于Launcher3的定制化功能中,在有些功能需要要求改变系统原有的density屏幕密度, 这样就会造成Launcher3的布局变化,所以就不符合要求,接下来就来看下如何禁止改变density造成Launcher3布局功能 改变的实现 2.Launcher修改densit…...

CAN协议简介

协议简介 can协议是一种用于控制网络的通信协议。它是一种基于广播的多主机总线网络协议,常用于工业自动化和控制领域。can协议具有高可靠性、实时性强和抗干扰能力强的特点,被广泛应用于汽车、机械、航空等领域。 can协议采用了先进的冲突检测和错误检测…...

(二)JSX基础

什么是JSX 概念:JSX是JavaScript和XML(HTML)的缩写,表示在JS代码中编写HTML模版结构,它是React中编写UI模板的方式。 优势:1.HTML的声明式模版方法;2.JS的可编程能力 JSX的本质 JSX并不是标准…...

GB 38469-2019 船舶涂料中有害物质限量检测

船舶涂料是指涂于船舶各部位,能防止海水、海洋大气腐蚀和海生物附着及满足船舶特种要求的各种涂料的统称。 GB 38469-2019船舶涂料中有害物质限量检测项目: 测试指标 测试方法 挥发性有机化合物VOC GB 30981 甲苯 GB 24408 苯 GB 30981 甲醇 G…...

汇编:数组-寻址取数据

比例因子寻址: 比例因子寻址(也称为比例缩放索引寻址或基址加变址加比例因子寻址)是一种复杂的内存寻址方式,常用于数组和指针操作。它允许通过一个基址寄存器、一个变址寄存器和一个比例因子来计算内存地址。 语法 比例因子寻…...

ROS自带的OpenCV库和自己安装版本冲突问题现象及解决方法

文章目录 1. 问题现象1.1 编译过程警告1.2 程序运行报错 2. 分析问题原因3. 解决方法 1. 问题现象 1.1 编译过程警告 warning: lipopencv_improc.so.406, needed by /usr/local/lib/libopencv_xfeatures2d.so.4.6.0, may conflict with libopencv_imgproc.so.4.21.2 程序运行…...

html+CSS+js部分基础运用19

1. 应用动态props传递数据,输出影片的图片、名称和描述等信息【要求使用props】,效果图如下: 2.在页面中定义一个按钮和一行文本,通过单击按钮实现放大文本的功能。【要求使用$emit()】 代码可以截图或者复制黏贴放置在“实验…...

探索 Debian 常用命令:掌握 Linux 系统管理的重要一步

Debian 作为一个稳定、高效和安全的操作系统,广泛应用于服务器、桌面和嵌入式系统中。对于新手和经验丰富的系统管理员来说,熟练掌握 Debian 的常用命令是管理和维护系统的基础。本文将详细介绍一些在 Debian 系统中经常使用的命令,帮助读者更好地理解和操作这个强大的操作系…...

「C系列」C 作用域规则

文章目录 一、C 作用域规则二、案例1. 块作用域(Block Scope)2. 文件作用域(File Scope)3. 静态作用域(Static Scope)静态局部变量静态全局变量 4. 函数参数的作用域5. 结构体和联合体的作用域 三、相关链接…...

【机器学习基础】Python编程10:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机…...

【设计模式】结构型设计模式之 门面模式

介绍 门面模式(Facade Pattern)是一种常用的设计模式,属于结构型模式的范畴。它为子系统中的一系列接口提供一个简化的统一接口,即一个外观(Facade),从而使子系统更加容易使用。门面模式并不修…...

MAC地址简介

一、MAC和ip地址 很多同学只知道ip地址,同时也知道ip在网络通讯中的重要性,实际上要实现网络通信的话,除了ip地址外还需要MAC地址的配合,只有在这两种地址的配合之下才能完整的实现互联网的通信。但是由于MAC地址的使用&#xff0…...

五种网络IO模型

目录 前言 文件描述符 为什么要多种io模型 同步IO 1.阻塞IO 2.非阻塞IO 3.多路复用IO(事件驱动IO) select: poll: epoll: 4.信号驱动IO 异步IO 区别 前言 文件描述符 首先我们了解一下文件描述符是什么:…...

VSCode超过390万下载的请求插件

Thunder Client 是一款在 VSCode(Visual Studio Code)中非常受欢迎的 REST API 客户端插件,由Ranga Vadhineni开发,现在已经有超过390万的下载量。它允许开发者直接在编辑器内发送 HTTP 请求,查看响应。Thunder Client…...

前端 JS 经典:下载的流式传输

触发下载在浏览器中有两种方式:1. 客户端的方式 2. 服务器的方式 1. 服务器的方式 通过 a 元素链接到一个服务器的地址,然后需要后端人员配置,当用户点击按钮请求这个地址时,服务端给他加上一个响应头。Content-Disposition 设置…...

k8s面试题大全,保姆级的攻略哦(三)

目录 1、简述ETCD及其特点? 2、简述ETCD适应的场景? 3、简述什么是Kubernetes? 4、简述Kubernetes和Docker的关系? 5、简述Kubernetes中什么是Minikube、Kubectl、Kubelet? 6、简述Kubernetes常见的部署方式? 7、简述Kubernetes如何实现集群管理? 8、简述Kubern…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...