当前位置: 首页 > news >正文

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割:从训练到部署

  • 1.模型介绍
  • 1.1 YOLOv5结构
    • 1.2 YOLOv5 推理时间
  • 2.构建数据集
    • 2.1 使用labelme标注数据集
    • 2.2 生成coco格式label
    • 2.3 coco格式转yolo格式
  • 3.训练
    • 3.1 整理数据集
    • 3.2 修改配置文件
    • 3.3 执行代码进行训练
  • 4.使用OpenCV进行c++部署
  • 参考文献

1.模型介绍

1.1 YOLOv5结构

SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode论文中给出了yolov5的结构框图:
在这里插入图片描述
SPPF块与传统的SPP之间的差异:
在这里插入图片描述

特征融合的几种结构:
在这里插入图片描述
YOLOV5的特征融合结构:
在这里插入图片描述

Ultralytics YOLOv5 Architecture 官方文档给出的详细的整体架构如下:
在这里插入图片描述

1.2 YOLOv5 推理时间

YOLOv5 CPU Export Benchmarks 给出的CPU推断时间:

benchmarks: weights=yolov5s.pt, imgsz=640, batch_size=1, data=/usr/src/app/data/coco128.yaml, device=, half=False, test=False, pt_only=False
Checking setup...
YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cpu CPU
Setup complete ✅ (96 CPUs, 1007.7 GB RAM, 1948.4/3519.3 GB disk)Benchmarks complete (128.39s)Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                56.52
1             TorchScript        0.4623                59.21
2                    ONNX        0.4623                60.95
3                OpenVINO        0.4623                27.44
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                70.84
7     TensorFlow GraphDef        0.4623                72.44
8         TensorFlow Lite        0.4623               130.43
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

https://learnopencv.com/custom-object-detection-training-using-yolov5/给出的时间:在这里插入图片描述

2.构建数据集

参考labelme+yolov5实例分割:自定义数据集制作、训练与注意点,使用labelme来构建yolov5支持的数据集。

2.1 使用labelme标注数据集

pip安装labelme,打开目录进行标注。

2.2 生成coco格式label

使用位于labelme-main\examples\instance_segmentation目录下的labelme2coco.py文件。

python  labelme2coco.py labelme标注json文件夹  coco目标文件夹 --labels labels.txt路径

查看设置的生成目录,存在以下三个文件:
在这里插入图片描述

2.3 coco格式转yolo格式

使用官方提供的转换工具 general_json2yolo.py :

代码中稍加修改2出:

  • 修改1
if __name__ == "__main__":source = "COCO"if source == "COCO":convert_coco_json("../datasets/coco/annotations",  # directory with *.jsonuse_segments=True,cls91to80=True,)

改为:

if __name__ == "__main__":source = "COCO"if source == "COCO":convert_coco_json("上一步生成的coco文件目录",  # directory with *.jsonuse_segments=True,cls91to80=False,# 这里修改成False)
  • 修改2
    在这里插入图片描述
    修改为:
            # Writewith open((fn / f[11:]).with_suffix(".txt"), "a") as file: #去掉字符串的父路径for i in range(len(bboxes)):line = (*(segments[i] if use_segments else bboxes[i]),)  # cls, box or segmentsfile.write(("%g " * len(line)).rstrip() % line + "\n")

运行

转换后的结果位于此文件同目录下的new_dir文件夹/labels/annotations目录中。一张图片对应一个txt文件。

3.训练

3.1 整理数据集

将上面环节生成的数据集保存成以下层次:

datasetimagestrainvallabelstrainval

3.2 修改配置文件

在git主目录下的data文件夹下新建或者修改自定义项目的数据集配置文件:

path:数据集目录
train:训练集目录
val:验证集目录# Classes 
names:0: cat11: cat2...

3.3 执行代码进行训练

python segment/train.py --model yolov5s-seg.pt --data data/custom.yaml --epochs 5 --img 640

4.使用OpenCV进行c++部署

https://github.com/doleron/yolov5-opencv-cpp-python/tree/main

参考文献

[1] https://learnopencv.com/custom-object-detection-training-using-yolov5/
[2] YOLOv5 CPU Export Benchmarks
[3] https://github.com/ultralytics/yolov5/releases
[4] https://sh-tsang.medium.com/brief-review-yolov5-for-object-detection-84cc6c6a0e3a
[5] Ultralytics YOLOv5 Architecture
[6] SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
[7] labelme+yolov5实例分割:自定义数据集制作、训练与注意点

相关文章:

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割:从训练到部署 1.模型介绍1.1 YOLOv5结构1.2 YOLOv5 推理时间 2.构建数据集2.1 使用labelme标注数据集2.2 生成coco格式label2.3 coco格式转yolo格式 3.训练3.1 整理数据集3.2 修改配置文件3.3 执行代码进行训练 4.使用OpenCV进行c部署参考文…...

【设计模式】行为型设计模式之 策略模式学习实践

介绍 策略模式(Strategy),就是⼀个问题有多种解决⽅案,选择其中的⼀种使⽤,这种情况下我们 使⽤策略模式来实现灵活地选择,也能够⽅便地增加新的解决⽅案。⽐如做数学题,⼀个问题的 解法可能有…...

lua中大数相乘的问题

math.maxinteger * 2 --> -2 原因:math.maxinteger的二进制 : 0111111111111111111111111111111111111111111111111111111111111111 往左移位,最右加一个0,是 1111111111111111111111111111111111111111111111111111111111111…...

第一个SpringBoot项目

目录 💭1、新建New Project IDEA2023版本创建Sping项目只能勾选17和21,却无法使用Java8?🌟 2、下载JDK 17🌟 💭2、项目创建成功界面 1、目录 🌟 2、pom文件🌟 💭3、…...

Android 10.0 Launcher修改density禁止布局改变功能实现

1.前言 在10.0的系统rom定制化开发中,在关于Launcher3的定制化功能中,在有些功能需要要求改变系统原有的density屏幕密度, 这样就会造成Launcher3的布局变化,所以就不符合要求,接下来就来看下如何禁止改变density造成Launcher3布局功能 改变的实现 2.Launcher修改densit…...

CAN协议简介

协议简介 can协议是一种用于控制网络的通信协议。它是一种基于广播的多主机总线网络协议,常用于工业自动化和控制领域。can协议具有高可靠性、实时性强和抗干扰能力强的特点,被广泛应用于汽车、机械、航空等领域。 can协议采用了先进的冲突检测和错误检测…...

(二)JSX基础

什么是JSX 概念:JSX是JavaScript和XML(HTML)的缩写,表示在JS代码中编写HTML模版结构,它是React中编写UI模板的方式。 优势:1.HTML的声明式模版方法;2.JS的可编程能力 JSX的本质 JSX并不是标准…...

GB 38469-2019 船舶涂料中有害物质限量检测

船舶涂料是指涂于船舶各部位,能防止海水、海洋大气腐蚀和海生物附着及满足船舶特种要求的各种涂料的统称。 GB 38469-2019船舶涂料中有害物质限量检测项目: 测试指标 测试方法 挥发性有机化合物VOC GB 30981 甲苯 GB 24408 苯 GB 30981 甲醇 G…...

汇编:数组-寻址取数据

比例因子寻址: 比例因子寻址(也称为比例缩放索引寻址或基址加变址加比例因子寻址)是一种复杂的内存寻址方式,常用于数组和指针操作。它允许通过一个基址寄存器、一个变址寄存器和一个比例因子来计算内存地址。 语法 比例因子寻…...

ROS自带的OpenCV库和自己安装版本冲突问题现象及解决方法

文章目录 1. 问题现象1.1 编译过程警告1.2 程序运行报错 2. 分析问题原因3. 解决方法 1. 问题现象 1.1 编译过程警告 warning: lipopencv_improc.so.406, needed by /usr/local/lib/libopencv_xfeatures2d.so.4.6.0, may conflict with libopencv_imgproc.so.4.21.2 程序运行…...

html+CSS+js部分基础运用19

1. 应用动态props传递数据,输出影片的图片、名称和描述等信息【要求使用props】,效果图如下: 2.在页面中定义一个按钮和一行文本,通过单击按钮实现放大文本的功能。【要求使用$emit()】 代码可以截图或者复制黏贴放置在“实验…...

探索 Debian 常用命令:掌握 Linux 系统管理的重要一步

Debian 作为一个稳定、高效和安全的操作系统,广泛应用于服务器、桌面和嵌入式系统中。对于新手和经验丰富的系统管理员来说,熟练掌握 Debian 的常用命令是管理和维护系统的基础。本文将详细介绍一些在 Debian 系统中经常使用的命令,帮助读者更好地理解和操作这个强大的操作系…...

「C系列」C 作用域规则

文章目录 一、C 作用域规则二、案例1. 块作用域(Block Scope)2. 文件作用域(File Scope)3. 静态作用域(Static Scope)静态局部变量静态全局变量 4. 函数参数的作用域5. 结构体和联合体的作用域 三、相关链接…...

【机器学习基础】Python编程10:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机…...

【设计模式】结构型设计模式之 门面模式

介绍 门面模式(Facade Pattern)是一种常用的设计模式,属于结构型模式的范畴。它为子系统中的一系列接口提供一个简化的统一接口,即一个外观(Facade),从而使子系统更加容易使用。门面模式并不修…...

MAC地址简介

一、MAC和ip地址 很多同学只知道ip地址,同时也知道ip在网络通讯中的重要性,实际上要实现网络通信的话,除了ip地址外还需要MAC地址的配合,只有在这两种地址的配合之下才能完整的实现互联网的通信。但是由于MAC地址的使用&#xff0…...

五种网络IO模型

目录 前言 文件描述符 为什么要多种io模型 同步IO 1.阻塞IO 2.非阻塞IO 3.多路复用IO(事件驱动IO) select: poll: epoll: 4.信号驱动IO 异步IO 区别 前言 文件描述符 首先我们了解一下文件描述符是什么:…...

VSCode超过390万下载的请求插件

Thunder Client 是一款在 VSCode(Visual Studio Code)中非常受欢迎的 REST API 客户端插件,由Ranga Vadhineni开发,现在已经有超过390万的下载量。它允许开发者直接在编辑器内发送 HTTP 请求,查看响应。Thunder Client…...

前端 JS 经典:下载的流式传输

触发下载在浏览器中有两种方式:1. 客户端的方式 2. 服务器的方式 1. 服务器的方式 通过 a 元素链接到一个服务器的地址,然后需要后端人员配置,当用户点击按钮请求这个地址时,服务端给他加上一个响应头。Content-Disposition 设置…...

k8s面试题大全,保姆级的攻略哦(三)

目录 1、简述ETCD及其特点? 2、简述ETCD适应的场景? 3、简述什么是Kubernetes? 4、简述Kubernetes和Docker的关系? 5、简述Kubernetes中什么是Minikube、Kubectl、Kubelet? 6、简述Kubernetes常见的部署方式? 7、简述Kubernetes如何实现集群管理? 8、简述Kubern…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...