Pytorch学习11_神经网络-卷积层
1.创建神经网络实例
 import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoaderdataset=torchvision.datasets.CIFAR10("../dataset_cov2d",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Xuexu(nn.Module):def __init__(self):super(Xuexu, self).__init__()self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)def forward(self,x):self.conv1(x)return xxuexu=Xuexu()
print(xuexu) 
 
 
 
 


2.观察输出
输出图像的形状信息,以便检查输入和输出的张量形状是否符合预期。在深度学习中,了解输入和输出的形状对于调试和确保网络结构正确连接非常重要
 import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader# 加载 CIFAR-10 数据集
from torch.utils.tensorboard import SummaryWriterdataset=torchvision.datasets.CIFAR10("../dataset_cov2d",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)# 创建数据加载器# 定义神经网络模型
class Xuexu(nn.Module):def __init__(self):super(Xuexu, self).__init__()# 定义卷积层self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)def forward(self, x):x=self.conv1(x)return xxuexu=Xuexu()
# writer=SummaryWriter("./logs")
step=0
for data in dataloader:imgs,target=dataoutput=xuexu(imgs)print(f"imgs:{imgs.shape}")print(f"output:{output.shape}")# writer.add_images("input",imgs,step)# writer.add_images("output",output,step)# step+=1
 
 
 
 

3.修改输出
 import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader# 加载 CIFAR-10 数据集
from torch.utils.tensorboard import SummaryWriterdataset=torchvision.datasets.CIFAR10("../dataset_cov2d",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)# 创建数据加载器# 定义神经网络模型
class Xuexu(nn.Module):def __init__(self):super(Xuexu, self).__init__()# 定义卷积层self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)def forward(self, x):x=self.conv1(x)# 调用卷积层,并将输出赋给 xreturn xxuexu=Xuexu()
writer=SummaryWriter("./logs")
step=0
for data in dataloader:imgs,target=dataoutput=xuexu(imgs)# print(f"imgs:{imgs.shape}")# print(f"output:{output.shape}")# imgs:torch.Size([64, 3, 32, 32])writer.add_images("input",imgs,step)# output:torch.Size([64, 6, 30, 30])->[xxx,3,30,30]output=torch.reshape(output,(-1,3,30,30))writer.add_images("output",output,step)step+=1 
 
 

终端运行
tensorboard --logdir="logs"
点击蓝色链接进入tensorboard网页

可以看到图片经过卷积之后得到的输出

参考
【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?p=18&share_source=copy_web&vd_source=be33b1553b08cc7b94afdd6c8a50dc5a
相关文章:
 
Pytorch学习11_神经网络-卷积层
1.创建神经网络实例 import torch import torchvision from torch import nn from torch.nn import Conv2d from torch.utils.data import DataLoaderdatasettorchvision.datasets.CIFAR10("../dataset_cov2d",trainFalse,transformtorchvision.transforms.ToTensor(…...
Qt实现程序单实例运行(只能运行1个进程)及QSharedMemory用法
1. 问题提出 在开发时,经常遇到这样的需求或场景:程序只能被启动一次,不能启动多次,启动多次会导致混乱,如:可执行程序用到文件指针、串口句柄等。试想如果存在多个同一个文件的句柄或同一个串口的句柄&…...
 
HTTP协议分析实验:通过一次下载任务抓包分析
HTTP协议分析 问:HTTP是干啥用的? 最简单通俗的解释:HTTP 是客户端浏览器或其他程序与Web服务器之间的应用层通信协议。 在Internet上的Web服务器上存放的都是超文本信息,客户机需要通过HTTP协议传输所要访问的超文本信息。 一、…...
http网络服务器
wwwroot(目录)/index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>比特就业课</title>…...
 
使用C++结合OpenCV进行图像处理与分类
⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨🎓。 如果觉得本文能帮到您,麻烦点个赞👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三…...
 
探索 Noisee AI 的奇妙世界与变现之旅
日赚800,利用淘宝/闲鱼进行AI音乐售卖实操 如何让AI生成自己喜欢的歌曲-AI音乐创作的正确方式 抖音主播/电商人员有福了,利用Suno创作产品宣传,让产品动起来-小米Su7 用sunoAI写粤语歌的方法,博主已经亲自实践可行 五音不全也…...
【SCSS】use的详细使用规则
目录 use加载成员选择命名空间私有成员配置使用 Mixin重新赋值变量 use 从其他 Sass 样式表中加载 mixins、函数和变量,并将来自多个样式表的 CSS 组合在一起。use加载的样式表被称为“模块”。 加载成员 // src/_corners.scss $radius: 3px;mixin rounded {bord…...
 
数据结构(C):二叉树前中后序和层序详解及代码实现及深度刨析
目录 🌞0.前言 🚈1.二叉树链式结构的代码是实现 🚈2.二叉树的遍历及代码实现和深度刨析代码 🚝2.1前序遍历 ✈️2.1.1前序遍历的理解 ✈️2.1.2前序代码的实现 ✈️2.1.3前序代码的深度解剖 🚝2.2中序遍历 ✈…...
 
Win11可以安装AutoCAD2007
1、在win11中,安装AutoCAD2007,需要先安装NET组件。否则会提示缺少".net文件" 打开“控制面板”,点击“程序”,点击“程序和功能”,点击“启用或关闭Windows功能”,勾选“.NET FrameWork 3.5”&a…...
 
C#操作MySQL从入门到精通(14)——汇总数据
前言 我们有时候需要对数据库查询的值进行一些处理,比如求平均值等操作,本文就是详细讲解这些用法,本文测试使用的数据库数据如下: 1、求平均值 求所有student_age 列的平均值 string sql = string.Empty; if (radioButton_AVG.Checked) {sql = “select AVG( student_…...
 
【设计模式深度剖析】【2】【行为型】【命令模式】| 以打开文件按钮、宏命令、图形移动与撤销为例加深理解
👈️上一篇:模板方法模式 | 下一篇:职责链模式👉️ 设计模式-专栏👈️ 文章目录 命令模式定义英文原话直译如何理解呢? 四个角色1. Command(命令接口)2. ConcreteCommand(具体命令类&…...
【随手记】maplotlib.use函数设置图像的呈现方式
matplotlib.use() 函数用于设置 matplotlib 的后端,这会影响图形的呈现方式。不同的后端适用于不同的环境和需求。下面列出一些常用的后端及其描述: 常见后端参数 Agg: 参数:agg描述:基于Anti-Grain Geometry的后端,适…...
 
LLVM Cpu0 新后端 系列课程总结
想好好熟悉一下llvm开发一个新后端都要干什么,于是参考了老师的系列文章: LLVM 后端实践笔记 代码在这里(还没来得及准备,先用网盘暂存一下): 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…...
 
【云原生】Kubernetes----RBAC用户资源权限
目录 引言 一、Kubernetes安全机制概述 二、认证机制 (一)认证方式 1.HTTPS证书认证 1.1 证书颁发 1.2 config文件 1.3 认证类型 1.4 Service Account 1.4.1 作用 1.4.2 包含内容 1.4.3 与Secret的关系 2.Bearer Tokens 3.基本认证 三、鉴…...
 
ORA-01652 表空间不够解决方案
前章:出现表空间不足不要手动强制删除对应数据文件存储目录下的DBF文件,需要用SQL语句进行数据文件的DROP,否则会导致ORA-01033报错,因为我没有开启数据库的归档所以不能通过RECOVER的形式找回数据文件最后只能重装本地ORACLE。 …...
亚马逊 AWS 视频转码功能、AWS Elemental MediaConvert 中创建和管理转码作业
上传的视频需要转码成不同的编码, 可以直接在 AWS Elemental MediaConvert 中创建和管理转码作业 AWS Elemental MediaConvert 中创建和管理转码作业 /*** 视频转码* return bool* author wzb* data 2024/5/30*/function videoTranscode(&$data){$fileId $data[id] ?? …...
 
RocketMQ可视化界面安装
RocketMQ可视化界面安装 **起因:**访问rocketmq-externals项目的git地址,下载了源码,在目录中并没有找到rocketmq-console文件夹。 git下面文档提示rocketMQ的仪表板转移到了新的项目中,点击仪表板到新项目地址; 下载…...
 
【ffmpeg】本地格式转换 mp4转wav||裁剪mp4
个人感受:太爽了!!!(可能用惯了转换网站和无良的转换软件) ———— 使用FFmpeg把mp4文件转换为WAV文件 - 简书 (jianshu.com) FFMPEG 视频分割和合并 - 简书 (jianshu.com) ———— 示例 ffmpeg -i …...
 
基于Django+MySQL的智慧校园系统
此项目基于Django MySQL HTML CSS JS jQuery bootstrap实现的功能有 学生管理部门管理代办清单管理校园论坛校园医疗服务校园看点校园生活助手常用功能入口 1. 一些注意点 1. 页面body会自动有一些边界距,处理方法: <head><style>b…...
 
Linux基础指令(一)
前言 Linux基础指令主要学习:对目录、文件、压缩包、匹配查找,权限等操作 第一次接触ubuntu需要知道的基本知识 sudo passwd root 先给root用户设置密码 su root 切换到root用户 su zhangsan …...
 
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
 
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
 
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
 
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
 
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
 
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
 
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
