当前位置: 首页 > news >正文

CUDA 编程(1):使用Grid 和 Block分配线程

1 介绍

1.1 Grid 和 Block 概念

核函数以线程为单位进行计算的函数,cuda编程会涉及到大量的线程(thread),几千个到几万个thread同时并行计算,所有的thread其实都是在执行同一个核函数。
在这里插入图片描述

  • 对于核函数(Kernel),一个核函数一般会分配1个Grid, 1个Grid又有很多个Block,1个Block中又有很多个thread,可以认为Grid和Block都是大量的thread组合:Grid > Block > thread之所以这么划分,比如将Grid划分为多维的Block,Block划分为多维thread,它其实是为了帮助你快速索引对应的thread
  • Grid 和Block是逻辑上意义的概念,它并不是在你的GPU硬件上实际存在的。

在这里插入图片描述
从上图可以看出,Block中有很多个thread,每个thread它都有自己的Registers和Local Memory。同时每一个Block中的thread,他们都是共享一个Shared Memory。同时一个Grid中的多个Bl

相关文章:

CUDA 编程(1):使用Grid 和 Block分配线程

1 介绍 1.1 Grid 和 Block 概念 核函数以线程为单位进行计算的函数,cuda编程会涉及到大量的线程(thread),几千个到几万个thread同时并行计算,所有的thread其实都是在执行同一个核函数。 对于核函数(Kernel),一个核函数一般会分配1个Grid, 1个Grid又有很多个Block,1个Bloc…...

ArcGIS for js 4.x FeatureLayer 加载、点选、高亮

安装arcgis for js 4.x 依赖&#xff1a; npm install arcgis/core 一、FeatureLayer 加载 代码如下&#xff1a; <template><view id"mapView"></view></template><script setup>import "arcgis/core/assets/esri/themes/li…...

倩女幽魂手游攻略:云手机自动搬砖辅助教程!

《倩女幽魂》手游自问世以来一直备受玩家喜爱&#xff0c;其精美画面和丰富的游戏内容让人沉迷其中。而如今&#xff0c;借助VMOS云手机&#xff0c;玩家可以更轻松地进行搬砖&#xff0c;提升游戏体验。 一、准备工作 下载VMOS云手机&#xff1a; 在PC端或移动端下载并安装VM…...

Typesense-开源的轻量级搜索引擎

Typesense-开源的轻量级搜索引擎 Typesense是一个快速、允许输入错误的搜索引擎&#xff0c;用于构建愉快的搜索体验。 开源的Algolia替代方案& 易于使用的弹性搜索替代方案 官网: https://typesense.org/ github: https://github.com/typesense/typesense 目前已有18.4k…...

探索 LLM 预训练的挑战,GPU 集群架构实战

万卡 GPU 集群实战&#xff1a;探索 LLM 预训练的挑战 一、背景 在过往的文章中&#xff0c;我们详细阐述了LLM预训练的数据集、清洗流程、索引格式&#xff0c;以及微调、推理和RAG技术&#xff0c;并介绍了GPU及万卡集群的构建。然而&#xff0c;LLM预训练的具体细节尚待进一…...

高考分数查询结果自动推送至微信(卷II)

祝各位端午节安康&#xff01;只要心中无结&#xff0c;每天都是节&#xff0c;开心最重要&#xff01; 在上一篇文章高考分数查询结果自动推送至微信&#xff08;卷Ⅰ&#xff09;-CSDN博客中谈了思路&#xff0c;今天具体实现。文中将敏感信息已做处理&#xff0c;读者根据自…...

python类动态属性,以属性方式访问字典

动态属性能够用来描述变化的类&#xff0c;在实际应用中容易遇到用到。 import logging class Sample:def __init__(self):self.timeNoneself.sampleidNoneself.massNoneself.beizhu""self.num0self.items{}#字典属性def __getattribute__(self, attr): #注意&#…...

招聘在家抄书员?小心是骗局!!!

在家抄书员的骗局是一种常见的网络诈骗手段&#xff0c;旨在利用人们想要在家轻松赚钱的心理。这种骗局通常会以招聘兼职抄写员的形式出现&#xff0c;声称只需在家中抄写书籍即可赚取可观的收入。然而&#xff0c;实际上这背后隐藏着诸多陷阱和虚假承诺。 首先&#xff0c;这些…...

Pytorch学习11_神经网络-卷积层

1.创建神经网络实例 import torch import torchvision from torch import nn from torch.nn import Conv2d from torch.utils.data import DataLoaderdatasettorchvision.datasets.CIFAR10("../dataset_cov2d",trainFalse,transformtorchvision.transforms.ToTensor(…...

Qt实现程序单实例运行(只能运行1个进程)及QSharedMemory用法

1. 问题提出 在开发时&#xff0c;经常遇到这样的需求或场景&#xff1a;程序只能被启动一次&#xff0c;不能启动多次&#xff0c;启动多次会导致混乱&#xff0c;如&#xff1a;可执行程序用到文件指针、串口句柄等。试想如果存在多个同一个文件的句柄或同一个串口的句柄&…...

HTTP协议分析实验:通过一次下载任务抓包分析

HTTP协议分析 问&#xff1a;HTTP是干啥用的&#xff1f; 最简单通俗的解释&#xff1a;HTTP 是客户端浏览器或其他程序与Web服务器之间的应用层通信协议。 在Internet上的Web服务器上存放的都是超文本信息&#xff0c;客户机需要通过HTTP协议传输所要访问的超文本信息。 一、…...

http网络服务器

wwwroot(目录)/index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>比特就业课</title>…...

使用C++结合OpenCV进行图像处理与分类

⭐️我叫忆_恒心&#xff0c;一名喜欢书写博客的在读研究生&#x1f468;‍&#x1f393;。 如果觉得本文能帮到您&#xff0c;麻烦点个赞&#x1f44d;呗&#xff01; 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧&#xff0c;喜欢的小伙伴给个三…...

探索 Noisee AI 的奇妙世界与变现之旅

日赚800&#xff0c;利用淘宝/闲鱼进行AI音乐售卖实操 如何让AI生成自己喜欢的歌曲-AI音乐创作的正确方式 抖音主播/电商人员有福了&#xff0c;利用Suno创作产品宣传&#xff0c;让产品动起来-小米Su7 用sunoAI写粤语歌的方法&#xff0c;博主已经亲自实践可行 五音不全也…...

【SCSS】use的详细使用规则

目录 use加载成员选择命名空间私有成员配置使用 Mixin重新赋值变量 use 从其他 Sass 样式表中加载 mixins、函数和变量&#xff0c;并将来自多个样式表的 CSS 组合在一起。use加载的样式表被称为“模块”。 加载成员 // src/_corners.scss $radius: 3px;mixin rounded {bord…...

数据结构(C):二叉树前中后序和层序详解及代码实现及深度刨析

目录 &#x1f31e;0.前言 &#x1f688;1.二叉树链式结构的代码是实现 &#x1f688;2.二叉树的遍历及代码实现和深度刨析代码 &#x1f69d;2.1前序遍历 ✈️2.1.1前序遍历的理解 ✈️2.1.2前序代码的实现 ✈️2.1.3前序代码的深度解剖 &#x1f69d;2.2中序遍历 ✈…...

Win11可以安装AutoCAD2007

1、在win11中&#xff0c;安装AutoCAD2007&#xff0c;需要先安装NET组件。否则会提示缺少".net文件" 打开“控制面板”&#xff0c;点击“程序”&#xff0c;点击“程序和功能”&#xff0c;点击“启用或关闭Windows功能”&#xff0c;勾选“.NET FrameWork 3.5”&a…...

C#操作MySQL从入门到精通(14)——汇总数据

前言 我们有时候需要对数据库查询的值进行一些处理,比如求平均值等操作,本文就是详细讲解这些用法,本文测试使用的数据库数据如下: 1、求平均值 求所有student_age 列的平均值 string sql = string.Empty; if (radioButton_AVG.Checked) {sql = “select AVG( student_…...

【设计模式深度剖析】【2】【行为型】【命令模式】| 以打开文件按钮、宏命令、图形移动与撤销为例加深理解

&#x1f448;️上一篇:模板方法模式 | 下一篇:职责链模式&#x1f449;️ 设计模式-专栏&#x1f448;️ 文章目录 命令模式定义英文原话直译如何理解呢&#xff1f; 四个角色1. Command&#xff08;命令接口&#xff09;2. ConcreteCommand&#xff08;具体命令类&…...

【随手记】maplotlib.use函数设置图像的呈现方式

matplotlib.use() 函数用于设置 matplotlib 的后端&#xff0c;这会影响图形的呈现方式。不同的后端适用于不同的环境和需求。下面列出一些常用的后端及其描述&#xff1a; 常见后端参数 Agg: 参数&#xff1a;agg描述&#xff1a;基于Anti-Grain Geometry的后端&#xff0c;适…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...