外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树
文章目录
- 外部排序
- 1.最基本的外部排序原理
- 2.外部排序的优化
- 2.1 败者树优化方法
- 2.2 置换-选择排序优化方法
- 2.3 最佳归并树
外部排序
为什么要学习外部排序?
答:
在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理,因为内存处理更快,但是由于内存空间较小,外存空间很大,外存中的数据元素太多,无法一次全部读入内存进行排序。所以,通过外部排序就是实现对于外存存储元素排序的方法。
1.最基本的外部排序原理
假设在外存中,我们有48个记录,按照每三个记录为一块,建立好基本16个分块。
注意:在建立基本的分块之前,外存的每个小分块要先进行内部排序,保证这16个分块内部是有序的。
内存中,有2个输入缓冲区和1个输出缓冲区,采用归并排序的思想,第一次,先从16个分块中拿出两块,分别放入缓冲区1和缓冲区2.然后每次从这两个缓冲区6的开头,选最小的,放入输出缓冲区,然后凑齐3个记录,就回填外存。以此类推,直到把这1个分块,变为8个分块。
第二次开始,本质还是这个过程,但是值得注意的是,我们必须保证输入缓冲区不空,即如果一旦一个缓冲区的元素被拿空了,要立刻用该分块的其它元素补上。

外部排序时间开销=读写外存的时间+内部排序所需时间+内部归并所需时间
不难得知,采用多路归并可以减少归并趟数。
记结论:
生成初始片段r个,进行k路归并
则趟数S=⌈logkr⌉
2.外部排序的优化
2.1 败者树优化方法
败者树用来减少关键字的比较次数。
将各个归并段段开头加入到败者树的叶子结点,然后开始构造败者树,注意,中间结点记录的是,当前胜者是来自哪个归并端,在得到冠军来自3号归并端后,将3号归并段的叶子结点移除,将3号归并段新的结点补上,此时,不需要比较太多次,通过败者树向上比较,就可以得出新的冠军,以此类推。

效率分析:
对于k路归并,第一次构造败者树需要对比关键字k-1次,
有了败者树,选出最小元素,只需要对比⌈log2k⌉
2.2 置换-选择排序优化方法
让归并段更少,即让归并段更长。
初始待排序文件,不断的将当前内存工作区中,大于minmax的最小值,加入归并段中,每加入一个,再从初始待排序文件中补充一个,直到内存工作区中的所有元素都小于minmax,然后开始输出归并段2,更改minmax,重复上述过程。


2.3 最佳归并树
对于归并过程进一步优化。
只讲干货:
每个初始归并端对应一个叶子结点,把归并段段块数作为叶子的权值。最好的归并的过程其实就是构造哈夫曼树的过程。
归并树的WPL=归并过程中的磁盘I/O次数
值得注意的是,k叉归并的最佳归并树一定是严格k叉树,所以很可能叶子结点的个数不满足构造严格k叉归并树,这时候需要补充虚段(权值为0的叶子结点,然后将这些权值为0的结点作为最初始的构造结点.
补充虚段的数量有公式:
(初始归并段数量-1)%(k-1)=u
若u=0,则说明不需要添加虚段,否则添加(k-1)-u个虚段。
下图是一个3路归并的最佳归并树。

相关文章:
外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树
文章目录 外部排序1.最基本的外部排序原理2.外部排序的优化2.1 败者树优化方法2.2 置换-选择排序优化方法2.3 最佳归并树 外部排序 为什么要学习外部排序? 答: 在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理…...
人工智能和物联网如何结合
欢迎来到 Papicatch的博客 目录 🍉引言 🍉AI与IoT的结合方式 🍈数据处理和分析 🍍实例 🍈边缘计算 🍍实例 🍈自动化和自主操作 🍍实例 🍈安全和隐私保护 &…...
【JAVASE】JAVA应用案例(下)
一:抢红包 一个大V直播时,发起了抢红包活动,分别有9,666,188,520,99999五个红包。请模拟粉丝来抽奖,按照先来先得,随机抽取,抽完即止,注意:一个红包只能被抽一次,先抽或…...
【面试干货】 B 树与 B+ 树的区别
【面试干货】 B 树与 B 树的区别 1、B 树2、 B 树3、 区别与优缺点比较4、 总结 💖The Begin💖点点关注,收藏不迷路💖 在数据库系统中,B 树和 B 树是常见的索引结构,它们在存储和组织数据方面有着不同的设计…...
Socket编程权威指南(四)彻底解密 Epoll 原理
在上一篇文章中,我们优化了基于 Socket 的网络服务器,从最初的 select/poll 模型进化到了高效的 epoll。很多读者对 epoll 的惊人性能表示极大的兴趣,对它的工作原理也充满了好奇。今天,就让我们一起揭开 epoll 神秘的面纱&#x…...
Windows开始ssh服务+密钥登录+默认启用powershell
文章内所有的命令都在power shell内执行,使用右键单击Windows徽标,选择终端管理员即可打开 Windows下OpenSSH的安装 打开Windows power shell,检查SSH服务的安装状态。会返回SSH客户端和服务器的安装状态,一下是两个都安装成功的…...
实体商铺私域流量打造策略:从引流到转化的全链路解析
在数字化时代,实体商铺面临着前所未有的挑战与机遇。随着线上购物的兴起,传统商铺如何吸引并留住顾客,成为了每个实体店家必须面对的问题。私域流量的打造,正是解决这一问题的关键所在。本文将从引流、留存、转化三个方面…...
实战 | 通过微调SegFormer改进车道检测效果(数据集 + 源码)
背景介绍 SegFormer:实例分割在自动驾驶汽车技术的快速发展中发挥了关键作用。对于任何在道路上行驶的车辆来说,车道检测都是必不可少的。车道是道路上的标记,有助于区分道路上可行驶区域和不可行驶区域。车道检测算法有很多种,每…...
翻译《The Old New Thing》- Why do messages posted by PostThreadMessage disappear?
Why do messages posted by PostThreadMessage disappear? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20090930-00/?p16553 Raymond Chen 2008年09月30日 为什么 PostThreadMessage 发布的信息会消失? 在显示用户界面的线…...
【深度学习】—— 神经网络介绍
神经网络介绍 本系列主要是吴恩达深度学习系列视频的笔记,传送门:https://www.coursera.org/deeplearning-ai 目录 神经网络介绍神经网络的应用深度学习兴起的原因 神经网络,全称人工神经网络(Artificial Neural Network…...
python-数字黑洞
[题目描述] 给定一个三位数,要求各位不能相同。例如,352是符合要求的,112是不符合要求的。将这个三位数的三个数字重新排列,得到的最大的数,减去得到的最小的数,形成一个新的三位数。对这个新的三位数可以重…...
SpringCloud 负载均衡 spring-cloud-starter-loadbalancer
简述 spring-cloud-starter-loadbalancer 是 Spring Cloud 中的一个组件,它提供了客户端负载均衡的功能。在 Spring Cloud 的早期版本中,Netflix Ribbon 被广泛用作客户端负载均衡器,但随着时间推移和 Netflix Ribbon 进入维护模式ÿ…...
牛客周赛-46
牛客周赛-46 a乐奈吃冰b素世喝茶c爱音开灯d小灯做题 a乐奈吃冰 ac code #include<iostream> using namespace std; int main(){long long a,b;cin>>a>>b;int tmpmin(b,a/2);long long resatmp;cout<<res;return 0; }b素世喝茶 #include<iostream…...
多模态vlm综述:An Introduction to Vision-Language Modeling 论文解读
目录 1、基于对比学习的VLMs 1.1 CLIP 2、基于mask的VLMs 2.1 FLAVA 2.2 MaskVLM 2.3 关于VLM目标的信息理论视角 3、基于生成的VLM 3.1 学习文本生成器的例子: 3.2 多模态生成模型的示例: 3.3 使用生成的文本到图像模型进行下游视觉语言任务 4、 基于预训练主干网…...
28.找零
上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/744 题目描述 有一台自动售票机,每张票卖 …...
[方法] 《鸣潮》/《原神》呼出与锁定光标的功能细节
本方法适用于Cinemachine - FreeLook。 1. 锁定与呼出光标的功能实现 // 锁定光标 private void LockMouse() {// 将光标锁定在屏幕中间Cursor.lockState CursorLockMode.Locked;// 隐藏光标Cursor.visible false; }// 呼出光标 private void UnLockMouse() {// 释放光标Cu…...
计算机网络-NAT配置与ACL
目录 一、ACL 1、ACL概述 2、ACL的作用 3、ACL的分类 4、ACL的配置格式 二、NAT 1、NAT概述 2、NAT分类 2.1 、 静态NAT 2.2 、 动态NAT 3、NAT的功能 4、NAT的工作原理 三、NAT配置 1、静态NAT配置 2、动态NAT配置 四、总结 一、ACL 1、ACL概述 ACLÿ…...
哈尔滨三级等保测评需要测哪些设备?
哈尔滨三级等保测评需要测的设备,主要包括物理安全设备、网络安全设备和应用安全设备三大类别。这些设备在保障哈尔滨地区信息系统安全方面发挥着至关重要的作用。 首先,物理安全设备是确保信息系统实体安全的基础。在哈尔滨三级等保测评中,物…...
大学体育(二)(华中科技大学) 中国大学MOOC答案2024版100分完整版
大学体育(二)(华中科技大学) 中国大学MOOC答案2024版100分完整版 有氧运动 有氧运动单元测验 1、 世界卫生组织对18-64岁年龄组成年人的运动建议是:每周至少( )分钟的中等强度有氧身体活动,或者每周至少&a…...
Web前端策划:从理念到实现的全方位解析
Web前端策划:从理念到实现的全方位解析 在数字化时代的浪潮中,Web前端策划作为连接技术与用户界面的桥梁,扮演着至关重要的角色。它涉及从用户需求分析、设计构思到技术实现的全方位过程,要求策划者具备深厚的技术功底和敏锐的市…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
