揭开FFT时域加窗的奥秘
FFT – Spectral Leakage
假设用于ADC
输出数据分析的采样点数为N
,而采样率为Fs
,那我们就知道,这种情况下的FFT
频谱分辨率为δf
,那么δf=Fs/N
。如果此时我们给ADC
输入一个待测量的单频Fin
,如果此时Fin
除以δf
不是整数,就会产生频率泄露。要尽可能保证测得的FFT
不会产生频谱泄露,有两种方式进行处理,相干采样和时域加窗。
(1)相干采样
假设M
是我们需要采样的输入信号的周期数,那么M/Fin=N/Fs
,也就是两个时间长度是一致的,也就是Fin/ Fs=M/N
,这个比值要能够被表达成为有理数(也就是整数或者分数)。N
必须是2
的幂数(这是从蝶形运算的角度考虑的)。M
和N
还必须要互为质数(这样可以避免重复采样相同位置的,重复采样周期信号相同的位置点不会获得额外的信息,因此不推荐M
取非素数(素数,除了1和它本身以外不再有其他因数的自然数))。如果选择了M/N
为非互质时,将导致信号周期性的量化,以及仅有少量的量化步进被测试。量化周期性的重复,建立了一个线谱,它是一个令人费解的实频率线(如下图2所示在谐波镜像之下的红线,这是由ADC
的非线性导致的,而黑色痕迹则是因为量化周期的重复性导致的,也就是M/N
为非互质导致的,图3是采用相干采样得到的结果。
从相干采样的描述来看,相干采样的输入信号Fin
和采样频率Fs
必须是同步信号。另外相干采样可以确保信号功率仅在一个FFT bin
(也就是频谱分辨率)之中。
图1 想干采样定理:
图2 重复相同位置采样导致的谐波痕线抬升:
图3 相干采样改善还原了真实的非线性特性:
(2)时域加窗
如果采样的波形是非连续的,也就是采集的样本不是信号的整数倍周期,那么就需要消除这种现象,从而减小FFT
的频谱泄露(注意不是完全改善),TI
的官方文档为我们展示了这一现象,如下图3所示,对信号进行了时域加窗,加窗之后频谱泄露有所减小。
图4 非周期采样频谱泄露展示:
很明显No window
(矩形窗)的旁瓣非常高,也就意味着,它的泄露抑制的不是很好。但是频率分辨率准确,幅值精度低。
- 不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的截短产生了能量泄漏,而用
FFT
算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。(矩形窗 主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度 最低,但幅值识别精度最高)Hanning
(汉宁窗)是使用最广泛的一种窗函数,除此之外还有,Hamming
(海明窗),Flat-top
窗和Balckman-Harris
窗,矩形窗产生最窄的谱线,加Flat-top
窗谱线最宽。旁瓣的影响和精确频率分辨率 有时候是不可兼得的。(矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;Flat-top
窗主瓣 宽,旁瓣小,频率识别精度最低,但幅值识别精度最高)
图5 TI官方的不同窗函数的频谱特性:
图6 不同应用使用的窗函数:
-
Processing loss(dB)
,也叫做相干功率增益,对一个信号进行加窗操作之后将会减少信号在时域上的幅值,尤其是在窗函数的左右边界,这种幅度的减小会引入幅度误差,每个窗函数的这种处理损失不太一样,TI
已经列于下表之中,矩形窗不存在损失。 -
Scalloping loss(dB)
,由于FFT
变换的结果是离散的,那么信号的频率有可能会落在两个FFT bin
之间,这样原本的功率就会被分散到两个bin
上,从而相对于原先的功率就会产生损失,这就叫做栅栏损失。
图7 不同窗函数使用的处理误差:
图8 不同窗函数的形状:
TI
的ADC
分析软件,内部已经对加窗处理损失进行修正。
大家可自行使用FFT
分析软件分析一下非整周期采样使用各种窗口的结果,加深理解Highest side lobe level、Processing loss、Scalloping loss以及Half main lobe width
。应用时域加窗技术会影响频谱分辨率。
相关文章:

揭开FFT时域加窗的奥秘
FFT – Spectral Leakage 假设用于ADC输出数据分析的采样点数为N,而采样率为Fs,那我们就知道,这种情况下的FFT频谱分辨率为δf,那么δfFs/N。如果此时我们给ADC输入一个待测量的单频Fin,如果此时Fin除以δf不是整数&a…...

【AI基础】第二步:安装AI运行环境
开局一张图: 接下来按照从下往上的顺序来安装部署。 规则1 注意每个层级的安装版本,上层的版本由下层版本决定 比如CUDA的版本,需要看显卡安装了什么版本的驱动,然后CUDA的版本不能高于这个驱动的版本。 这个比较好理解&…...

【MySQL】聊聊唯一索引是如何加锁的
首先我们要明确,加锁的对象是索引,加锁的基本单位是next-key lock,由记录锁和间隙锁组成。next-key是前开后闭区间,间隙锁是前开后开区间。根据不同的查询条件next-key 可能会退化成记录锁或间隙锁。 在能使用记录锁或者间隙锁就…...
k8s-CCE使用node节点使用VIP--hostNetworkhostPort
CCE使用node节点使用VIP 背景:想在节点上使用VIP,将nodeport服务做到高可用。启动VIP后发现访问失败 部署 ! Configuration File for keepalived global_defs { router_id master-node }vrrp_instance VI_1 {state BACKUPinterface eth0mcast_src_ip 10.1.0.60virtual_rou…...
18、关于优化中央企业资产评估管理有关事项的通知
一、加强重大资产评估项目管理 (一)中央企业应当对资产评估项目实施分类管理,综合考虑评估目的、评估标的资产规模、评估标的特点等因素,合理确定本集团重大资产评估项目划分标准,原则上,企业对外并购股权项目应纳入重大资产评估项目。中央企业应当研究制定重大资产评估…...

AI大模型日报#0610:港大等1bit大模型“解决AI能源需求”、谷歌开源TimesFM时序预测模型
导读:AI大模型日报,爬虫LLM自动生成,一文览尽每日AI大模型要点资讯!目前采用“文心一言”(ERNIE 4.0)、“零一万物”(Yi-Large)生成了今日要点以及每条资讯的摘要。欢迎阅读…...
速盾:图片cdn加速 免费
随着互联网的快速发展,图片在网页设计和内容传播中起着重要的作用。然而,随着网站访问量的增加和图片文件大小的增加,图片加载速度可能会成为一个问题。为了解决这个问题,许多网站使用图片CDN加速服务。 CDN(Content …...
贪心算法例子
贪心算法概述 贪心算法是一种在每一步选择中都做出局部最优选择的算法,以期望通过一系列局部最优选择达到全局最优。贪心算法在许多优化问题中表现良好,特别是在某些特定类型的问题中能够保证找到最优解。 活动选择问题(Activity Selection Problem)背包问题(贪心解法)霍…...

vivado HW_ILA_DATA、HW_PROBE
HW_ILA_DATA 描述 硬件ILA数据对象是ILA调试核心上捕获的数据的存储库 编程到当前硬件设备上。upload_hw_ila_data命令 在从ila调试移动捕获的数据的过程中创建hw_ila_data对象 核心,hw_ila,在物理FPGA上,hw_device。 read_hw_ila_data命令还…...
refault distance算法的一点理解
这个算法看了好几次了,都没太理解,今天记录一下,加深一下印象。 引用某个博客对这个算法的介绍 一次访问page cache称为fault,第二次访问该页面称为refault。page cache页面第一次被踢出LRU链表并回收(eviction)的时刻称为E&#…...
软件安全技术【太原理工大学】
没有划重点,只说了一句课后题和实验中的内容都可能会出。 2022考试题型:选择20个20分,填空10个10分,名词解释4个20分,简答6个30分,分析与论述2个20分,没找到历年题。 如此看来,这门考…...
异常(Exception)
异常是什么 异常就是程序在进行时的不正常行为,就像之前数组时会遇到空指针异常(NullPointerException),数组越界异常(ArrayIndexOutOfBoundsException)等等。 在java中异常由类来表示。 异常的分类 异常…...
一文者懂LLaMA 2(原理、模型、训练)
引言 LLaMA(Large Language Model Meta AI)是Meta(前身为Facebook)开发的自然语言处理模型家族之一,LLaMA 2作为其最新版本,展示了在语言理解和生成方面的显著进步。本文将详细解读LLaMA 2的基本原理、模型…...
MySQL 存储函数及调用
1.mysql 存储函数及调用 在MySQL中,存储函数(Stored Function)是一种在数据库中定义的特殊类型的函数,它可以从一个或多个参数返回一个值。存储函数在数据库层面上封装了复杂的SQL逻辑,使得在应用程序中调用时更加简单…...
设计模式七大原则-单一职责原则SingleResponsibility
七大原则是在设计“设计模式”的时候需要用到的原则,它们的存在是为了保证设计模式达到以下几种目的: 1.代码重用性 2.可读性 3.可拓展性 4.可靠性(增加新的功能后,对原来的功能没有影响) 5.使程序呈现高内聚、低耦合的…...

msfconsole利用Windows server2008cve-2019-0708漏洞入侵
一、环境搭建 Windows系列cve-2019-0708漏洞存在于Windows系统的Remote Desktop Services(远程桌面服务)(端口3389)中,未经身份验证的攻击者可以通过发送特殊构造的数据包触发漏洞,可能导致远程无需用户验…...
Reinforcement Learning学习(三)
前言 最近在学习Mujoco环境,学习了一些官方的Tutorials以及开源的Demo,对SB3库的强化学习标准库有了一定的了解,尝试搭建了自己的环境,基于UR5E机械臂,进行了一个避障的任务,同时尝试接入了图像大模型API,做了一些有趣的应用,参考资料如下: https://mujoco.readthedo…...
hw meta10 adb back up DCIM
1. centos install adb 2. HW enable devlepment mode & enalbe adb debug 3. add shell root/zt/adb-sync python3 ./adb-sync --reverse /sdcard/DCIM/Camera /root/zt/meta10...

Unity2D游戏制作入门 | 12(之人物受伤和死亡的逻辑动画)
上期链接:Unity2D游戏制作入门 | 11(之人物属性及伤害计算)-CSDN博客 上期我们聊到了人物的自身属性和受伤时的计算,我们先给人物和野猪挂上属性和攻击属性的代码,然后通过触发器触发受伤的事件。物体(人物也好敌人也行ÿ…...

从河流到空气,BL340工控机助力全面环保监测网络构建
在环保监测领域,智能化、高效率的监测手段正逐步成为守护绿水青山的新常态。其中,ARMxy工业计算机BL340凭借其强大的处理能力、高度的灵活性以及广泛的兼容性,在水质监测站、空气质量检测、噪音污染监控等多个环保应用场景中脱颖而出…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...

Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...