当前位置: 首页 > news >正文

基于JavaScript 实现近邻算法以及优化方案

前言

近邻算法(K-Nearest Neighbors,简称 KNN)是一种简单的、广泛使用的分类和回归算法。它的基本思想是:给定一个待分类的样本,找到这个样本在特征空间中距离最近的 k 个样本,这 k 个样本的多数类别作为待分类样本的类别。

本教程文章将详细讲解如何使用 JavaScript 实现一个简单的 KNN 算法,我们会从理论出发,逐步从零开始编写代码。

理论基础

距离度量

KNN 算法的核心是计算两个样本之间的距离,常用的距离度量方法有:

  • 欧氏距离(Euclidean Distance)
  • 曼哈顿距离(Manhattan Distance)

在本教程中,我们将使用最常见的欧氏距离来计算样本之间的距离。

欧氏距离公式如下:

[ d(p, q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} ]

其中 ( p ) 和 ( q ) 是两个 n 维空间中的点, ( p_i ) 和 ( q_i ) 是这两个点在第 ( i ) 维的坐标。

算法步骤

  1. 计算距离:计算待分类样本与训练样本集中所有样本的距离。
  2. 排序:按距离从小到大对所有距离进行排序。
  3. 选择最近的 k 个样本:从排序后的结果中选择距离最近的 k 个样本。
  4. 投票:多数投票决定待分类样本的类别。

实现步骤

初始化数据

首先,我们需要一些样本数据来进行分类。假设我们有以下二维数据集:

const trainingData = [{ x: 1, y: 2, label: 'A' },{ x: 2, y: 3, label: 'A' },{ x: 3, y: 3, label: 'B' },{ x: 6, y: 5, label: 'B' },{ x: 7, y: 8, label: 'B' },{ x: 8, y: 8, label: 'A' },
];

计算距离

编写一个函数来计算两个点之间的欧氏距离:

function euclideanDistance(point1, point2) {return Math.sqrt(Math.pow(point1.x - point2.x, 2) +Math.pow(point1.y - point2.y, 2));
}

排序并选择最近的 k 个样本

编写一个函数,根据距离对样本进行排序,并选择距离最近的 k 个样本:

function getKNearestNeighbors(trainingData, testPoint, k) {const distances = trainingData.map((dataPoint) => ({...dataPoint,distance: euclideanDistance(dataPoint, testPoint)}));distances.sort((a, b) => a.distance - b.distance);return distances.slice(0, k);
}

多数投票

编写一个函数,通过多数投票来决定类别:

function majorityVote(neighbors) {const voteCounts = neighbors.reduce((acc, neighbor) => {acc[neighbor.label] = (acc[neighbor.label] || 0) + 1;return acc;}, {});return Object.keys(voteCounts).reduce((a, b) => voteCounts[a] > voteCounts[b] ? a : b);
}

主函数

最后,编写一个主函数来整合上述步骤,完成 KNN 算法:

function knn(trainingData, testPoint, k) {const neighbors = getKNearestNeighbors(trainingData, testPoint, k);return majorityVote(neighbors);
}

测试

现在我们来测试一下这个 KNN 实现:

const testPoint = { x: 5, y: 5 };
const k = 3;const result = knn(trainingData, testPoint, k);
console.log(`The predicted label for the test point is: ${result}`);

运行这个代码,你会得到预测的类别。

优化方案

虽然我们已经实现了一个基本的 KNN 算法,但在实际应用中,我们还可以进行一些优化和扩展,使其更加高效和实用。

优化距离计算

在大数据集上,计算每个点之间的欧氏距离可能会很耗时。我们可以通过一些高效的数据结构如 KD 树(K-Dimensional Tree)来进行快速邻近搜索。以下是一个简单的 KD 树的实现示例:

class KDTree {constructor(points, depth = 0) {if (points.length === 0) {this.node = null;return;}const k = 2; // 2Dconst axis = depth % k;points.sort((a, b) => a[axis] - b[axis]);const median = Math.floor(points.length / 2);this.node = points[median];this.left = new KDTree(points.slice(0, median), depth + 1);this.right = new KDTree(points.slice(median + 1), depth + 1);}nearest(point, depth = 0, best = null) {if (this.node === null) {return best;}const k = 2;const axis = depth % k;let nextBranch = null;let oppositeBranch = null;if (point[axis] < this.node[axis]) {nextBranch = this.left;oppositeBranch = this.right;} else {nextBranch = this.right;oppositeBranch = this.left;}best = nextBranch.nearest(point, depth + 1, best);const dist = euclideanDistance(point, this.node);if (best === null || dist < euclideanDistance(point, best)) {best = this.node;}if (Math.abs(point[axis] - this.node[axis]) < euclideanDistance(point, best)) {best = oppositeBranch.nearest(point, depth + 1, best);}return best;}
}const points = trainingData.map(point => [point.x, point.y, point.label]);
const kdTree = new KDTree(points);const nearestPoint = kdTree.nearest([testPoint.x, testPoint.y]);
console.log(`The nearest point is: ${nearestPoint[2]}`);

考虑不同距离度量

不同的距离度量方法在不同的场景下可能会有不同的效果。除了欧氏距离外,还可以尝试以下几种距离度量方法:

  • 曼哈顿距离(Manhattan Distance)
  • 闵可夫斯基距离(Minkowski Distance)
  • 切比雪夫距离(Chebyshev Distance)

我们可以编写一些函数来实现这些距离度量方法,并在主函数中进行选择:

function manhattanDistance(point1, point2) {return Math.abs(point1.x - point2.x) + Math.abs(point1.y - point2.y);
}function minkowskiDistance(point1, point2, p) {return Math.pow(Math.pow(Math.abs(point1.x - point2.x), p) +Math.pow(Math.abs(point1.y - point2.y), p),1 / p);
}function chebyshevDistance(point1, point2) {return Math.max(Math.abs(point1.x - point2.x), Math.abs(point1.y - point2.y));
}

调整 k 值

选择合适的 k 值对算法的性能至关重要。过小的 k 值可能导致过拟合,而过大的 k 值可能导致欠拟合。一个常见的做法是通过交叉验证来选择最优的 k 值。

处理多维数据

在实际应用中,数据通常是多维的。我们的算法已经可以处理二维数据,但对于多维数据,只需稍微调整距离计算函数即可:

function euclideanDistanceND(point1, point2) {let sum = 0;for (let i = 0; i < point1.length; i++) {sum += Math.pow(point1[i] - point2[i], 2);}return Math.sqrt(sum);
}

代码重构

为了更好地组织代码,我们可以将不同的功能模块化:

class KNN {constructor(k = 3, distanceMetric = euclideanDistance) {this.k = k;this.distanceMetric = distanceMetric;}fit(trainingData) {this.trainingData = trainingData;}predict(testPoint) {const neighbors = this.getKNearestNeighbors(testPoint);return this.majorityVote(neighbors);}getKNearestNeighbors(testPoint) {const distances = this.trainingData.map((dataPoint) => ({...dataPoint,distance: this.distanceMetric(dataPoint, testPoint)}));distances.sort((a, b) => a.distance - b.distance);return distances.slice(0, this.k);}majorityVote(neighbors) {const voteCounts = neighbors.reduce((acc, neighbor) => {acc[neighbor.label] = (acc[neighbor.label] || 0) + 1;return acc;}, {});return Object.keys(voteCounts).reduce((a, b) => voteCounts[a] > voteCounts[b] ? a : b);}
}// 测试代码
const knnClassifier = new KNN(3, euclideanDistance);
knnClassifier.fit(trainingData);
const predictedLabel = knnClassifier.predict(testPoint);
console.log(`The predicted label for the test point is: ${predictedLabel}`);

通过这种方式,我们不仅提高了代码的可读性和可维护性,还为将来更复杂的扩展和优化打下了基础。

结语

KNN 算法简单易懂,适用于很多分类问题,特别是在数据规模不大时。然而,KNN 的计算复杂度较高,尤其在高维数据和大规模数据集上,因此在实际应用中常常需要结合其他技术进行优化。

相关文章:

基于JavaScript 实现近邻算法以及优化方案

前言 近邻算法&#xff08;K-Nearest Neighbors&#xff0c;简称 KNN&#xff09;是一种简单的、广泛使用的分类和回归算法。它的基本思想是&#xff1a;给定一个待分类的样本&#xff0c;找到这个样本在特征空间中距离最近的 k 个样本&#xff0c;这 k 个样本的多数类别作为待…...

移动端适配和响应式页面中的常用单位

在移动端适配和响应式页面中&#xff0c;一般采用以下几种单位&#xff1a; 百分比&#xff08;%&#xff09;&#xff1a;百分比单位是相对于父元素的大小计算的。它可以用于设置宽度、高度、字体大小等属性&#xff0c;使得元素能够随着父元素的大小自动调整。百分比单位在响…...

麒麟v10系统arm64架构openssh9.7p1的rpm包

制作openssh 说明 理论上制作的多个rpm在arm64架构&#xff08;aarch64&#xff09;都适用 系统信息&#xff1a;4.19.90-17.ky10.aarch64 GNU/Linux 升级前备份好文件/etc/ssh、/etc/pam.d等以及开启telnet 升级后确认正常后关闭telnet 在之前制作过openssh-9.5p1基础上继续…...

刚刚❗️德勤2025校招暑期实习测评笔试SHL测评题库已发(答案)

&#x1f4e3;德勤 2024暑期实习测评已发&#xff0c;正在申请的小伙伴看过来哦&#x1f440; ㊙️本次暑期实习优先考虑2025年本科及以上学历的毕业生&#xff0c;此次只有“审计及鉴定”“税务与商务咨询”两个部门开放了岗位~ ⚠️测评注意事项&#xff1a; &#x1f44…...

python对视频进行帧处理以及裁减部分区域

视频截取帧 废话不多说直接上代码&#xff1a; from cv2 import VideoCapture from cv2 import imwrite# 定义保存图片函数 # image:要保存的图片名字 # addr&#xff1b;图片地址与相片名字的前部分 # num: 相片&#xff0c;名字的后缀。int 类型 def save_image(image, add…...

Python栈的编程题目

你好&#xff0c;我是悦创。 下面是三道关于栈的编程题目&#xff0c;适合不同难度级别的练习&#xff1a; 1. 有效的括号&#xff08;简单&#xff09; 题目描述&#xff1a; 给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[ 和 ] 的字符串&#xf…...

ROS云课三分钟外传之CoppeliaSim_Edu_V4_1_0_Ubuntu16_04

三分钟热度试一试吧&#xff0c;走过路过不要错过。 参考之前&#xff1a; 从云课五分钟到一分钟之v-rep_pro_edu_v3_6_2-CSDN博客 git clone https://gitcode.net/ZhangRelay/v-rep_pro_edu_v3_6_2_ubuntu16_04.gittar -xf v-rep_pro_edu_v3_6_2_ubuntu16_04/V-REP_PRO_EDU…...

day28回溯算法part04| 93.复原IP地址 78.子集 90.子集II

**93.复原IP地址 ** 本期本来是很有难度的&#xff0c;不过 大家做完 分割回文串 之后&#xff0c;本题就容易很多了 题目链接/文章讲解 | 视频讲解 class Solution { public:vector<string> result;// pointNum记录加入的点的数量&#xff0c;其等于3的时候停止void b…...

SpringBoot项目启动时“jar中没有主清单属性”异常

资料参考 Spring Boot 启动时 “jar中没有主清单属性” 异常 - spring 中文网 (springdoc.cn) 实际解决 更详细的参考以上&#xff0c;我这边的话只需要在 pom文件 中加上 spring-boot-maven-plugin 插件就能解决该异常&#xff0c;具体如下&#xff1a; <build><p…...

vAttention:用于在没有Paged Attention的情况下Serving LLM

文章目录 0x0. 前言&#xff08;太长不看版&#xff09;0x1. 摘要0x2. 介绍&背景0x3. 使用PagedAttention模型的问题0x3.1 需要重写注意力kernel0x3.2 在服务框架中增加冗余0x3.3 性能开销0x3.3.1 GPU上的运行时开销0x3.3.2 CPU上的运行时开销 0x4. 对LLM服务系统的洞察0x5…...

Python实现Stack

你好&#xff0c;我是悦创。 Python 中的栈结构是一种后进先出&#xff08;LIFO, Last In, First Out&#xff09;的数据结构&#xff0c;这意味着最后添加到栈中的元素将是第一个被移除的。栈通常用于解决涉及到反转、历史记录和撤销操作等问题。在 Python 中&#xff0c;你可…...

Helm在线部署Longhorn(1.6.0版本)分布式存储

环境依赖&#xff1a; k8s (版本大于等于v1.21版本)、helm工具 安装前准备 k8s worker 节点都需要执行 yum -y --setopttsflagsnoscripts install iscsi-initiator-utils echo "InitiatorName$(/sbin/iscsi-iname)" > /etc/iscsi/initiatorname.iscsi systemctl …...

算法题目学习汇总

1、二叉树前中后序遍历:https://blog.csdn.net/cm15835106905/article/details/124699173 2、输入一棵二叉搜索树&#xff0c;将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点&#xff0c;只能调整树中结点指针的指向。 public class Solution {private Tr…...

DockerCompose中部署Jenkins(Docker Desktop在windows上数据卷映射)

场景 DockerJenkinsGiteeMaven项目配置jdk、maven、gitee等拉取代码并自动构建以及遇到的那些坑&#xff1a; DockerJenkinsGiteeMaven项目配置jdk、maven、gitee等拉取代码并自动构建以及遇到的那些坑_jenkins的安装以及集成jdkgitmaven 提示警告-CSDN博客 Windows10(家庭版…...

吊车报警的工作原理和使用场景_鼎跃安全

在现代建筑施工过程中&#xff0c;经常使用大型机械设备&#xff0c;如挖掘机、吊车、打桩机等&#xff0c;这些设备在施工过程中发挥着越来越重要的作用&#xff1b;同时&#xff0c;这些设备的作业频繁进行作业&#xff0c;对于接触到高压电线的风险也随之增加。大型机械设备…...

Spring5

文章目录 1. Spring 是什么&#xff1f;2. IoC3. Spring Demo4. IoC 创建对象的方式 / DI 方式注入的默认参数在哪里设定? 5. Spring 配置tx:annotation-driven 用于启用基于注解的事务管理 6. Bean的作用域7. 在Spring中有三种自动装配的方式1. 在xml中显式的配置2. 在java中…...

vue面试题二

一、请解释Vue中的双向数据绑定是什么&#xff1f; Vue中的双向数据绑定是一种机制&#xff0c;它使得数据的变化能够自动反映在用户界面上&#xff0c;同时用户界面中的输入也能够自动更新数据。这种机制实现了数据层&#xff08;Model&#xff09;和视图层&#xff08;View&…...

软件设计师笔记-程序语言基础知识

编程语言之间的翻译形式 编程语言之间的翻译形式主要有三种:汇编、解释和编译。这三种方式在将源代码转换为机器可执行的代码时,有着各自的特点和流程。 汇编: 定义:汇编是低级语言(如汇编语言)到机器语言的一种翻译方式。汇编语言是为特定计算机或计算机系列设计的一种…...

在Windows上安装VMWare Pro 16.2(虚拟机)并从零安装CentOS 7.6镜像过程记录

本文详细记录了在Windows的VMWare Workstation Pro 16.2中安装CentOS 7.6 的过程,非常适合新手从零开始一步步安装。 文章目录 一、安装VMWare Workstation Pro 16.2并激活二、安装CentOS 7.62.1 下载CentOS7.6镜像文件2.2 创建新的虚拟机2.3 安装CentOS镜像一、安装VMWare Wo…...

NGINX之location和rewrite

一.NGINX常用的正则表达式 二.Location location作用:对访问的路径做访问控制或者代理转发 1.location 常用的匹配规则&#xff1a; 进行普通字符精确匹配&#xff0c;也就是完全匹配^~ / 表示普通字符匹配。使用前缀匹配。如果匹配成功&#xff0c;则不再匹配其它 …...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...