当前位置: 首页 > news >正文

【因果推断python】26_双重稳健估计1

目录

不要把所有的鸡蛋放在一个篮子里

双重稳健估计

关键思想


不要把所有的鸡蛋放在一个篮子里

我们已经学会了如何使用线性回归和倾向得分加权来估计 E[Y|T=1]-E[Y|T=0]|X。但是我们应该在什么时候使用哪一个呢?在不明确的情况下,请同时使用两者!双重稳健估计是一种将倾向得分和线性回归相结合的方法,您不必依赖它们中的任何一种。

为了了解这是如何工作的,让我们考虑一下心态实验。这是一项在美国公立高中进行的随机研究,旨在发现成长心态的影响。它的工作方式是学校邀请学生参加一个研讨会,向他们灌输一种成长的心态。然后,他们跟踪学生在大学期间的表现,并衡量他们在学业上的表现。这个衡量结果被编译为标准化的成就分数。为了保护学生的隐私,这项研究的真实数据没有公开。但是,我们有一个与 Athey 和 Wager 提供的统计属性相同的模拟数据集,因此我们将改为使用这个数据来进行分析。

import warnings
warnings.filterwarnings('ignore')import pandas as pd
import numpy as np
from matplotlib import style
from matplotlib import pyplot as plt
import seaborn as sns%matplotlib inlinestyle.use("fivethirtyeight")
pd.set_option("display.max_columns", 6)
data = pd.read_csv("./data/learning_mindset.csv")
data.sample(5, random_state=5)

虽然这项研究做了随机化处理,但这些数据并不是没有出现混淆的情况。其中一个可能的原因是,干预变量是通过学生是否收到研讨会邀请来衡量的。因此,尽管被邀请参与的机会是随机的,但是否真的参与却不是。我们在这里处理一个不服从(non-compliance)的情况。这方面的一个证据是学生对成功的期望是如何与是否参加研讨会相关联的。自我报告中期望较高的学生更有可能参加成长心态研讨会。

data.groupby("success_expect")["intervention"].mean()

正如已经学习到的,我们可以通过使用线性回归或者逻辑回归估计倾向得分模型的方法来调整不服从的情况。在做回归之前,我们需要将份类变量转化为虚拟变量。

categ = ["ethnicity", "gender", "school_urbanicity"]
cont = ["school_mindset", "school_achievement", "school_ethnic_minority", "school_poverty", "school_size"]data_with_categ = pd.concat([data.drop(columns=categ), # dataset without the categorical featurespd.get_dummies(data[categ], columns=categ, drop_first=False) # categorical features converted to dummies
], axis=1)print(data_with_categ.shape)
(10391, 32)

我们现在已经准备好了解双重稳健估计的工作原理。

双重稳健估计\hat{\mu_0}(x)

我不会推导出估算器,而是首先向您展示它,然后才告诉您为什么它很棒。

A\hat{T}E=\frac1N\sum\left(\frac{T_i(Y_i-\hat{\mu_1}(X_i))}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)-\frac1N\sum\left(\frac{(1-T_i)(Y_i-\hat{\mu_0}(X_i))}{1-\hat{P}(X_i)}+\hat{\mu_0}(X_i)\right)

其中 \hat{P}(x) 是对倾向得分的估计(例如,使用逻辑回归),\hat{\mu_1}(x) 是对倾向得分的估计E[Y|X,T=1](例如使用线性回归),而 \mu_0(x) 是对 E[Y|X,T=0]。正如您可能已经猜到的那样,双重稳健估计器的第一部分估计 E[Y_{1}],第二部分估计 E[Y_{0}]。让我们检查第一部分,因为所有直觉也将通过类比适用于第二部分。

因为我一开始就知道这个公式很吓人(但别担心,你会看到它超级简单),我将首先展示如何编写这个估计器。我觉得有些人对代码的恐惧不如对公式的恐惧。让我们看看这个估计器在实践中是如何工作的,好吗?

from sklearn.linear_model import LogisticRegression, LinearRegressiondef doubly_robust(df, X, T, Y):ps = LogisticRegression(C=1e6).fit(df[X], df[T]).predict_proba(df[X])[:, 1]mu0 = LinearRegression().fit(df.query(f"{T}==0")[X], df.query(f"{T}==0")[Y]).predict(df[X])mu1 = LinearRegression().fit(df.query(f"{T}==1")[X], df.query(f"{T}==1")[Y]).predict(df[X])return (np.mean(df[T]*(df[Y] - mu1)/ps + mu1) -np.mean((1-df[T])*(df[Y] - mu0)/(1-ps) + mu0))
T = 'intervention'
Y = 'achievement_score'
X = data_with_categ.columns.drop(['schoolid', T, Y])doubly_robust(data_with_categ, X, T, Y)
0.3882222817222756

双重稳健估计者说,就成就而言,我们应该期望参加心态研讨会的个人比未经治疗的同伴高 0.388 个标准差。 再一次,我们可以使用 bootstrap 来构建置信区间。

from joblib import Parallel, delayed # for parallel processingnp.random.seed(88)
# run 1000 bootstrap samples
bootstrap_sample = 1000
ates = Parallel(n_jobs=4)(delayed(doubly_robust)(data_with_categ.sample(frac=1, replace=True), X, T, Y)for _ in range(bootstrap_sample))
ates = np.array(ates)
print(f"ATE 95% CI:", (np.percentile(ates, 2.5), np.percentile(ates, 97.5)))
sns.distplot(ates, kde=False)
plt.vlines(np.percentile(ates, 2.5), 0, 20, linestyles="dotted")
plt.vlines(np.percentile(ates, 97.5), 0, 20, linestyles="dotted", label="95% CI")
plt.title("ATE Bootstrap Distribution")
plt.legend();

现在我们已经了解了双重稳健估计器,让我们来看看为什么它如此出色。首先,它被称为双重鲁棒,因为它只需要模型之一,\hat{P}(x)\hat{\mu}(x)是正确的指定的。要了解这一点,请查看估计 E[Y_{1}]的第一部分并仔细查看它。

\hat{E}[Y_1]=\frac{1}{N}\sum\left(\frac{T_i(Y_i-\hat{\mu_1}(X_i))}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)

假设 \hat{\mu_1}(x) 是正确的。如果倾向得分模型是错误的,我们不需要担心。因为如果\hat{\mu_1}(x) 是正确的,那么 E[T_i(Y_i-\hat{\mu_1}(X_i))]=0。那是因为 T_{i}的乘法只选择了被处理的,并且\hat{\mu_1} 在被处理的残差上,根据定义,均值为零。这导致整个公式等于 \hat{\mu_1}(X_i),这是通过假设正确估计的 E[Y_{1}]。所以,你看,通过正确,\hat{\mu_1}(X_i) 消除了倾向得分模型的相关性。我们可以应用相同的推理来理解 E[Y_0] 的估计量。

但不要相信我的话。让代码告诉你方向!在下面的估计器中,我用一个从 0.1 到 0.9 的随机统一变量替换了估计倾向得分的逻辑回归(我不希望非常小的权重破坏我的倾向得分方差)。由于这是随机的,所以它不可能是一个好的倾向得分模型,但我们将看到双重稳健估计器仍然设法产生一个非常接近于使用逻辑回归估计倾向得分时的估计值。

from sklearn.linear_model import LogisticRegression, LinearRegressiondef doubly_robust_wrong_ps(df, X, T, Y): # wrong PS model np.random.seed(654) ps = np.random.uniform(0.1, 0.9, df.shape[0]) mu0 = LinearRegression().fit(df.query(f"{T}==0")[X], df.query(f"{T}==0")[Y]).predict(df[X]) mu1 = LinearRegression().fit(df.query(f"{T}==1")[X], df.query(f"{T}==1")[Y]).predict(df[X]) return ( np.mean(df[T](df[Y] - mu1)/ps + mu1) - np.mean((1-df[T])(df[Y] - mu0)/(1-ps) + mu0) )doubly_robust_wrong_ps(data_with_categ, X, T, Y)

如果我们使用自助采样法,我们可以看到,相比基于逻辑回归的倾向得分,方差会稍高一点。

np.random.seed(88)
parallel_fn = delayed(doubly_robust_wrong_ps)
wrong_ps = Parallel(n_jobs=4)(parallel_fn(data_with_categ.sample(frac=1, replace=True), X, T, Y)for _ in range(bootstrap_sample))
wrong_ps = np.array(wrong_ps)
print(f"ATE 95% CI:", (np.percentile(ates, 2.5), np.percentile(ates, 97.5)))

这涵盖了倾向模型错误但结果模型正确的情况。其他情况呢?让我们再好好看看估计器的第一部分,但让我们重新排列一些术语

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_i(Y_i-\hat{\mu_1}(X_i))}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_iY_i}{\hat{P}(X_i)}-\frac{T_i\hat{\mu_1}(X_i)}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_iY_i}{\hat{P}(X_i)}-\left(\frac{T_i}{\hat{P}(X_i)}-1\right)\hat{\mu_1}(X_i)\right)

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_iY_i}{\hat{P}(X_i)}-\left(\frac{T_i-\hat{P}(X_i)}{\hat{P}(X_i)}\right)\hat{\mu_1}(X_i)\right)

现在,假设正确指定了倾向得分 \hat{P}(X_i)。在这种情况下,E[T_i-\hat{P}(X_i)]=0,它消除了依赖于 \hat{\mu_1}(X_i) 的部分。这使得双重鲁棒估计器减少为倾向得分加权估计器 \frac{T_iY_i}{\hat{P}(X_i)},假设是正确的。因此,即使 \hat{\mu_1}(X_i)是错误的,只要正确指定了倾向得分,估计器仍然是正确的。

再一次,如果你更相信代码而不是公式,这里就是实际验证。在下面的代码中,我用随机正态变量替换了两个回归模型。毫无疑问 \hat{\mu}(X_i)是错误的。尽管如此,我们仍将看到双重稳健估计仍设法恢复我们之前看到的大约 0.38 的相同 \hat{ATE}

from sklearn.linear_model import LogisticRegression, LinearRegressiondef doubly_robust_wrong_model(df, X, T, Y):np.random.seed(654)ps = LogisticRegression(C=1e6).fit(df[X], df[T]).predict_proba(df[X])[:, 1]# wrong mu(x) modelmu0 = np.random.normal(0, 1, df.shape[0])mu1 = np.random.normal(0, 1, df.shape[0])return (np.mean(df[T]*(df[Y] - mu1)/ps + mu1) -np.mean((1-df[T])*(df[Y] - mu0)/(1-ps) + mu0))
doubly_robust_wrong_model(data_with_categ, X, T, Y)

同样的,我们可以通过使用自助采样法看到方差还是相对高一点。

np.random.seed(88)
parallel_fn = delayed(doubly_robust_wrong_model)
wrong_mux = Parallel(n_jobs=4)(parallel_fn(data_with_categ.sample(frac=1, replace=True), X, T, Y)for _ in range(bootstrap_sample))
wrong_mux = np.array(wrong_mux)
print(f"ATE 95% CI:", (np.percentile(ates, 2.5), np.percentile(ates, 97.5)))

我希望我已经让你相信双重稳健估计的力量。它之所以神奇,是因为在因果推理中,有两种方法可以从我们的因果估计中消除偏见:您可以对干预机制或结果机制进行建模如果这些模型中的任何一个都是正确的,那么您就可以开始了。

一个需要警惕的地方是,在实践中,很难对其中任何一个进行精确建模更常见的情况是,倾向得分和结果模型都不是 100% 正确的。他们都错了,但方式不同。发生这种情况时, 是使用单一模型最好还是使用双重稳健估计更佳,目前还没有一个定论[1] [2] [3]。至于我,我仍然喜欢对两种方法都考虑一下,因为至少给了我两种正确的可能性。

关键思想

在这里,我们看到了一种将线性回归与倾向得分相结合的简单方法,以产生双重稳健的估计量。这个估计器之所以有这个名字,是因为它只需要一个模型是正确的。如果倾向得分模型是正确的,即使结果模型是错误的,我们也能够识别因果效应。另一方面,如果结果模型是正确的,即使倾向评分模型是错误的,我们也能够识别因果效应。

相关文章:

【因果推断python】26_双重稳健估计1

目录 不要把所有的鸡蛋放在一个篮子里 双重稳健估计 关键思想 不要把所有的鸡蛋放在一个篮子里 我们已经学会了如何使用线性回归和倾向得分加权来估计 。但是我们应该在什么时候使用哪一个呢?在不明确的情况下,请同时使用两者!双重稳健估计…...

C语言 图形化界面方式连接MySQL【C/C++】【图形化界面组件分享】

博客主页:花果山~程序猿-CSDN博客 文章分栏:MySQL之旅_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一.配置开发环境 二…...

Unity DOTS技术(十五) 物理系统

要解决性能的瓶颈问题,在DOTS中我们将不再使用Unity自带的物理组件. 下面来分享一下在DOTS中当如何使用物理插件. 一.导入插件 在使用DOTS系创建的实体我们会发现,游戏物体无法受物理系统影响进行运动.于是我们需要添加物理系统插件. 1.打开Package Manager > 搜索插件Uni…...

Java线程安全

线程安全 线程安全:线程安全:synchronized同步代码块:同步方法:成员同步方法:静态同步方法: Lock:应用: 单例模式:懒汉式:饿汉式:枚举饿汉式:双重检验锁: 线程…...

Solidity选择使用 require 语句还是条件语句结合手动触发 revert 操作?回滚交易和抛出异常如何选择?

文章目录 Solidity选择使用 require 语句还是条件语句结合手动触发 revert 操作?场景举例:回滚交易和抛出异常如何选择? Solidity选择使用 require 语句还是条件语句结合手动触发 revert 操作? IERC721 nft IERC721(nftAddress)…...

SpringCloud 网关配置websocket

一、nginx https://域名.com location /websocket/ { proxy_pass http://172.1.1.173:8181/; #内网网关IP proxy_http_version 1.1; proxy_read_timeout 360s; proxy_redirect off; proxy_set_header Upgrade $http_upgrade; …...

基于JavaScript 实现近邻算法以及优化方案

前言 近邻算法(K-Nearest Neighbors,简称 KNN)是一种简单的、广泛使用的分类和回归算法。它的基本思想是:给定一个待分类的样本,找到这个样本在特征空间中距离最近的 k 个样本,这 k 个样本的多数类别作为待…...

移动端适配和响应式页面中的常用单位

在移动端适配和响应式页面中,一般采用以下几种单位: 百分比(%):百分比单位是相对于父元素的大小计算的。它可以用于设置宽度、高度、字体大小等属性,使得元素能够随着父元素的大小自动调整。百分比单位在响…...

麒麟v10系统arm64架构openssh9.7p1的rpm包

制作openssh 说明 理论上制作的多个rpm在arm64架构(aarch64)都适用 系统信息:4.19.90-17.ky10.aarch64 GNU/Linux 升级前备份好文件/etc/ssh、/etc/pam.d等以及开启telnet 升级后确认正常后关闭telnet 在之前制作过openssh-9.5p1基础上继续…...

刚刚❗️德勤2025校招暑期实习测评笔试SHL测评题库已发(答案)

📣德勤 2024暑期实习测评已发,正在申请的小伙伴看过来哦👀 ㊙️本次暑期实习优先考虑2025年本科及以上学历的毕业生,此次只有“审计及鉴定”“税务与商务咨询”两个部门开放了岗位~ ⚠️测评注意事项: &#x1f44…...

python对视频进行帧处理以及裁减部分区域

视频截取帧 废话不多说直接上代码: from cv2 import VideoCapture from cv2 import imwrite# 定义保存图片函数 # image:要保存的图片名字 # addr;图片地址与相片名字的前部分 # num: 相片,名字的后缀。int 类型 def save_image(image, add…...

Python栈的编程题目

你好,我是悦创。 下面是三道关于栈的编程题目,适合不同难度级别的练习: 1. 有效的括号(简单) 题目描述: 给定一个只包括 (,),{,},[ 和 ] 的字符串&#xf…...

ROS云课三分钟外传之CoppeliaSim_Edu_V4_1_0_Ubuntu16_04

三分钟热度试一试吧,走过路过不要错过。 参考之前: 从云课五分钟到一分钟之v-rep_pro_edu_v3_6_2-CSDN博客 git clone https://gitcode.net/ZhangRelay/v-rep_pro_edu_v3_6_2_ubuntu16_04.gittar -xf v-rep_pro_edu_v3_6_2_ubuntu16_04/V-REP_PRO_EDU…...

day28回溯算法part04| 93.复原IP地址 78.子集 90.子集II

**93.复原IP地址 ** 本期本来是很有难度的&#xff0c;不过 大家做完 分割回文串 之后&#xff0c;本题就容易很多了 题目链接/文章讲解 | 视频讲解 class Solution { public:vector<string> result;// pointNum记录加入的点的数量&#xff0c;其等于3的时候停止void b…...

SpringBoot项目启动时“jar中没有主清单属性”异常

资料参考 Spring Boot 启动时 “jar中没有主清单属性” 异常 - spring 中文网 (springdoc.cn) 实际解决 更详细的参考以上&#xff0c;我这边的话只需要在 pom文件 中加上 spring-boot-maven-plugin 插件就能解决该异常&#xff0c;具体如下&#xff1a; <build><p…...

vAttention:用于在没有Paged Attention的情况下Serving LLM

文章目录 0x0. 前言&#xff08;太长不看版&#xff09;0x1. 摘要0x2. 介绍&背景0x3. 使用PagedAttention模型的问题0x3.1 需要重写注意力kernel0x3.2 在服务框架中增加冗余0x3.3 性能开销0x3.3.1 GPU上的运行时开销0x3.3.2 CPU上的运行时开销 0x4. 对LLM服务系统的洞察0x5…...

Python实现Stack

你好&#xff0c;我是悦创。 Python 中的栈结构是一种后进先出&#xff08;LIFO, Last In, First Out&#xff09;的数据结构&#xff0c;这意味着最后添加到栈中的元素将是第一个被移除的。栈通常用于解决涉及到反转、历史记录和撤销操作等问题。在 Python 中&#xff0c;你可…...

Helm在线部署Longhorn(1.6.0版本)分布式存储

环境依赖&#xff1a; k8s (版本大于等于v1.21版本)、helm工具 安装前准备 k8s worker 节点都需要执行 yum -y --setopttsflagsnoscripts install iscsi-initiator-utils echo "InitiatorName$(/sbin/iscsi-iname)" > /etc/iscsi/initiatorname.iscsi systemctl …...

算法题目学习汇总

1、二叉树前中后序遍历:https://blog.csdn.net/cm15835106905/article/details/124699173 2、输入一棵二叉搜索树&#xff0c;将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点&#xff0c;只能调整树中结点指针的指向。 public class Solution {private Tr…...

DockerCompose中部署Jenkins(Docker Desktop在windows上数据卷映射)

场景 DockerJenkinsGiteeMaven项目配置jdk、maven、gitee等拉取代码并自动构建以及遇到的那些坑&#xff1a; DockerJenkinsGiteeMaven项目配置jdk、maven、gitee等拉取代码并自动构建以及遇到的那些坑_jenkins的安装以及集成jdkgitmaven 提示警告-CSDN博客 Windows10(家庭版…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…...

HTML版英语学习系统

HTML版英语学习系统 这是一个完全免费、无需安装、功能完整的英语学习工具&#xff0c;使用HTML CSS JavaScript实现。 功能 文本朗读练习 - 输入英文文章&#xff0c;系统朗读帮助练习听力和发音&#xff0c;适合跟读练习&#xff0c;模仿学习&#xff1b;实时词典查询 - 双…...