当前位置: 首页 > news >正文

推荐系统 FM因式分解

reference:知乎 FM算法解析

  • LR算法没有二阶交叉
    在这里插入图片描述
    如果是id类特征,这里的x是0/1,raw的特征输入就是float,当然,在我的理解里,一般会把raw的特征进行分桶,还是映射到0/1特征,不然这个wiw_iwi的功能也太重了…?(想想其实是没有道理的)

其实为什么常把连续值的变量进行分桶,我也不是很清楚… 只是大家都这么干…似乎效果会更好

  • poly2算法引入二阶交叉
    二阶交叉能提升模型的表达能力(辛普森悖论)
    先进行特征的笛卡尔积,然后在赋予这个笛卡尔积各值一个权重。举例:

    3个特征分别是:

    • f1国家( 候选集为{中国,美国,加拿大} )
    • f2性别( 候选集为{男,女} )
    • f3人群( 候选集为{青年,中年,老年} )

    poly2算法就是先对特征进行笛卡尔积获得交叉特征,然后在交叉特征的基础上做LR,所以在此时会生成三个新二阶特征

    • f1f2国家x性别( 候选集为{中国男,中国女,美国男,美国女,加拿大男,加拿大女} )
    • f1f3国家x人群( 候选集为{中国青年,中国中年,中国老年,美国青年,美国中年,美国老年,加拿大青年,加拿大中年,加拿大老年} )
    • f2f3性别x人群( 候选集为{男青年,男中年,男老年,女青年,女中年,女老年} )。

    可以看到,此时二阶特征的候选集就一下子大了很多,每一个候选项都会对应一个权重(当特征为1的时候,该权重生效;特征为0的时候,权重就不生效,也不会得到反向传播的梯度进行自我更新),所以此时二阶交叉特征的权重变成了6+9+6=21个(一阶特征的权重有3+2+3=8个)。我举的例子中一阶特征候选集不大,但实际中一阶特征候选集是会比较大的(也就是常说的特征稀疏),比如类目特征可能就有几百上千维,再和另一个比较稀疏的特征进行笛卡尔积,二阶交叉特征的权重数量就会陡增,同时也因为两个稀疏特征的共现概率更低了,所以训练收敛难度会更高。

  • FM进行计算简化

    • 先将特征映射成稠密的隐向量,可以理解为one-hot的候选集映射到一个embedding-lookup table中
    • 复杂度分析
      • 参数量复杂度
      • 计算时间复杂度 O(kn2)O(kn^2)O(kn2) --> O(kn)O(kn)O(kn)
  • 其实现在大部分的W&D的模型里面,one-hot向量映射到embedding向量的过程,就是因式分解的一个过程;wide侧的手动特征交叉则是POLY2的思想

  • 复杂度分析:

相关文章:

推荐系统 FM因式分解

reference:知乎 FM算法解析 LR算法没有二阶交叉 如果是id类特征,这里的x是0/1,raw的特征输入就是float,当然,在我的理解里,一般会把raw的特征进行分桶,还是映射到0/1特征,不然这个w…...

Maven基础入门

文章目录Maven简介Maven 工作模式1.仓库2.坐标Maven的基本使用1.常用命令2.生命周期依赖管理1.依赖配置2.依赖传递3.可选依赖4.排除依赖5.依赖范围IDEA配置MavenMaven简介 Apache Maven 是一个项目管理和构建工具,它基于项目对象模型(POM)的概念,通过一…...

传输层协议 TCP UDP

目录 协议前菜 端口号 ​编辑端口号范围划分 认识知名端口号(Well-Know Port Number) netstat pidof 传输层协议 UDP协议 UDP协议端格式 UDP的特点 面向数据报 UDP的缓冲区 UDP使用注意事项 基于UDP的应用层协议 TCP协议 TCP协议概念 TCP协议段格式 标志…...

一点就分享系列(实践篇6——上篇)【迟到补发】Yolo-High_level系列算法开源项目融入V8 旨在研究和兼容使用【持续更新】

一点就分享系列(实践篇5-补更篇)[迟到补发]—Yolo系列算法开源项目融入V8旨在研究和兼容使用[持续更新] 题外话 去年我一直复读机式强调High-level在工业界已经饱和的情况,目的是呼吁更多人看准自己,不管是数字孪生交叉领域&#…...

buu RSA 1 (Crypto 第一页)

题目描述: 两个文件,都用记事本打开,记住用记事本打开 pub.key: -----BEGIN PUBLIC KEY----- MDwwDQYJKoZIhvcNAQEBBQADKwAwKAIhAMAzLFxkrkcYL2wch21CM2kQVFpY97 /AvKr1rzQczdAgMBAAE -----END PUBLIC KEY-----flag.enc: A柪YJ^ 柛x秥?y…...

Python 二分查找:bisect库的使用

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心&…...

性能优化之HBase性能调优

HBase是Hadoop生态系统中的一个组件,是一个分布式、面向列存储的内存型开源数据库,可以支持数百万列(MySQL4张表在HBase中对应1个表,4个列)、超过10亿行的数据存储。可用作:冷热数据分离HBase适合作为冷数据…...

图像金字塔,原理、实现及应用

什么是图像金字塔 图像金字塔是对图像的一种多尺度表达,将各个尺度的图像按照分辨率从小到大,依次从上到下排列,就会形成类似金字塔的结构,因此称为图像金字塔。 常见的图像金字塔有两类,一种是高斯金字塔&#xff0…...

08-Oracle游标管理(定义,打开、获取数据及关闭游标)

目标 1.确定何时需要显示游标2.声明、打开和关闭显示游标3.从显示游标中提取数据4.了解与游标有关的属性5.使用游标FOR循环检索游标中的数据6.在游标FOR循环的子查询中声明游标7.评估使用逻辑运算符结合在一起的布尔条件游标 1、在使用一个PL/SQL块来执行DML语句或只返回一行结…...

Python判断字符串是否包含特定子串的7种方法

目录1、使用 in 和 not in2、使用 find 方法3、使用 index 方法4、使用 count 方法5、通过魔法方法6、借助 operator7、使用正则匹配转自:https://cloud.tencent.com/developer/article/1699719我们经常会遇这样一个需求:判断字符串中是否包含某个关键词…...

aop实现接口访问频率限制

引言 项目开发中我们有时会用到一些第三方付费的接口,这些接口的每次调用都会产生一些费用,有时会有别有用心之人恶意调用我们的接口,造成经济损失;或者有时需要对一些执行时间比较长的的接口进行频率限制,这里我就简…...

Hive---窗口函数

Hive窗口函数 其他函数: Hive—Hive函数 文章目录Hive窗口函数开窗数据准备建表导入数据聚合函数window子句LAG(col,n,default_val) 往前第 n 行数据LEAD(col,n, default_val) 往后第 n 行数据ROW_NUMBER() 会根据顺序计算RANK() 排序相同时会重复,总数不会变DENSE…...

JavaSe第7次笔记

1. C语言里面,NULL是0地址。Java中null和0地址没关系。 2.数组可以做方法的返回值。 3.可以使用变量作为数组的个数开辟空间。 4.断言assert,需要设置。 5.排序:Arrays. sort(array); 6.查找: int index Arrays. binarySea…...

什么是 Service 以及描述下它的生命周期。Service 有哪些启动方法,有 什么区别,怎样停用 Service?

在 Service 的生命周期中,被回调的方法比 Activity 少一些,只有 onCreate, onStart, onDestroy, onBind 和 onUnbind。 通常有两种方式启动一个 Service,他们对 Service 生命周期的影响是不一样的。 1. 通过 startService Service 会经历 onCreate 到 onStart,然后处于运行…...

Redis部署

JAVA安装 mkdir /usr/local/javacd /usr/local/java/wget --no-check-certificate --no-cookies --header "Cookie: oraclelicenseaccept-securebackup-cookie" http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u13…...

AT32F437制作Bootloader然后实现Http OTA升级

首先创建一个AT32F437的工程,然后发现调试工程配置这里的型号和创建工程选的型号不一致,手动更改一下,使用PW Link下载程序的话还要配置一下pyocd.exe的路径。 打开drv_clk.c文件的调试功能看下系统时钟频率。 项目使用的是AT32F437VMT7芯片&…...

Springboot项目启动初始化数据缓存

1.从Java EE5规范开始,Servlet中增加了两个影响Servlet生命周期的注解, PostConstruct和PreDestroy,这两个注解被用来修饰一个非静态的void()方法,被PostConstruct修饰的方法会在服务器加载Servlet的时候运…...

深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化

在深度学习中,第一步要做的往往就是处理数据集,尤其是学习百度飞桨PaddlePaddle的小伙伴,数据集经常要用Voc格式的,比如性能突出的ppyolo等模型。所以学会数据集转化的本领是十分必要的。这篇博客就带你一起进行Yolo与Voc格式的相互转化&…...

数据、数据资源及数据资产管理的区别

整理不易,转发请注明出处,请勿直接剽窃! 点赞、关注、不迷路! 摘要:数据、数据资源、数据资产 数据、数据资源及数据资产的区别 举例 CRM系统建设完成后会有很多数据,这些数据就是原始数据,业务…...

标度不变性(scale invariance)与无标度(scale-free)概念辨析

文章目录标度标度种类名义标度序级标度等距标度比率标度常用标度方法不足标度不变性标度不变(Scale-invariant)曲线和自相似性(self-similarity)射影几何分形随机过程中的标度不变性标度不变的 Tweedie distribution普适性&#x…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...