当前位置: 首页 > news >正文

【回调函数】

1.回调函数是什么?

回调函数就是⼀个通过函数指针调用的函数。
如果你把函数的指针(地址)作为参数传递给另⼀个函数当这个指针被用来调用其所指向的函数
时,被调用的函数就是
回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发⽣时由另外的⼀方调用的,用于对该事件或条件进⾏响应。
只有调⽤函数的逻辑是有差异的,我们可以把调⽤的函数的地址以参数的形式传递过去,使⽤函数指针接收,函数指针指向什么函数就调⽤什么函数,这⾥其实使⽤的就是回调函数的功能。

接下来是一个简易计算器(利用回调函数)

#include <stdio.h>
int add(int a, int b)
{return a + b;
}
int sub(int a, int b)
{return a - b;
}
int mul(int a, int b)
{return a * b;
}
int div(int a, int b)
{return a / b;
}void calc(int(*pf)(int, int))
{int x, y;int ret = 0;printf("输入操作数:");scanf("%d %d", &x, &y);ret = pf(x, y);printf("ret = %d\n", ret);
}int main()
{int input = 1;do{printf("*************************\n");printf("  1:add           2:sub  \n");printf("  3:mul           4:div  \n");printf("********0. exit *********\n");printf("请选择:");scanf("%d", &input);switch (input){case 1:calc(add);break;case 2:calc(sub);break;case 3:calc(mul);break;case 4:calc(div);break;case 0:printf("退出程序\n");break;default:printf("选择错误\n");break;}} while (input);return 0;
}

图 

下面是改造后的方法(利用数组函数进行优化,方便,减少冗余)

//加法
int add(int a, int b)
{return a + b;
}
//减法
int sub(int a, int b)
{return a - b;
}
//乘法
int mul(int a, int b)
{return a * b;
}
//除法
int div(int a, int b)
{return a / b;
}
//菜单
void menu()
{printf("*****************************\n");printf("********1.add   2.sub********\n");printf("********3.mul   4.div********\n");printf("********   0.exit  **********\n");printf("*****************************\n");
}
int main()
{int* (*pfArr[])(int, int) = {NULL,add ,sub,mul,div};//函数指针数组,存放函数int input = 0;int x = 0;int y = 0;int ret = 0;do {menu();printf("请选择");scanf("%d", &input);if (input >= 1 && input <= 4) {printf("请输入两个操作数:");scanf("%d %d", &x, &y);ret = pfArr[input](x, y);//这里进行调用函数数组里面的函数printf("%d\n",ret);}else if(input==0){printf("退出\n");}else {printf("选择错误,重新选择");}} while (input);return 0;
}

相关文章:

【回调函数】

1.回调函数是什么&#xff1f; 回调函数就是⼀个通过函数指针调用的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递给另⼀个函数&#xff0c;当这个指针被用来调用其所指向的函数 时&#xff0c;被调用的函数就是回调函数。回调函数不是由该函数的实现方…...

找树左下角的值-力扣

本题个人认为不能叫做 找树左下角的值&#xff0c;左下角再怎么说也应当在树的左子树上&#xff0c;本题要求的节点是树最底层最左边的值。 首先想到的解法是对二叉树进行层序遍历&#xff0c;并记录本层第一个节点的值&#xff0c;当层序遍历结束时&#xff0c;此时记录的值即…...

【AI应用探讨】— Gemma2模型应用场景

目录 1. 金融风险管理 2. 营销策略优化 3. 医疗保健领域 4. 供应链管理 5. 人力资源管理 6. 自然语言处理&#xff08;NLP&#xff09; 7. 图像识别 8. 音频信号处理 9. 总结 1. 金融风险管理 场景描述&#xff1a;Gemma 2模型在金融领域可用于预测金融市场的波动性和…...

树二叉树

树 ​ 树是 n&#xff08;n≥0&#xff09;个结点的有限集。当 n 0时&#xff0c;称为空树。在任意一颗非空树中应满足&#xff1a; &#xff08;1&#xff09;有且仅有一个特定的称为根的结点。 &#xff08;2&#xff09;当 n > 1时&#xff0c;其余结点可分为 m&…...

无源晶振振荡电路失效问题分析与解决策略

无源晶振&#xff08;晶体谐振器&#xff09;在电子设备中扮演着至关重要的角色&#xff0c;为数字电路提供稳定的时钟信号。然而&#xff0c;振荡电路一旦失效&#xff0c;可能会导致整个系统运行不正常。晶发电子将从三个主要方面分析无源晶振振荡电路失效的问题&#xff0c;…...

LIMS系统在汽车第三方检测实验室的应用

随着汽车行业的快速发展&#xff0c;汽车第三方检测实验室的工作量不断增加&#xff0c;对实验室的管理效率和数据准确性提出了更高的要求。LIMS系统的引入可以实现实验室的全面数字化管理&#xff0c;提高工作效率&#xff0c;降低运营成本&#xff0c;并提升数据质量与决策支…...

positivessl泛域名https证书

PositiveSSL&#xff0c;作为Sectigo旗下的子品牌&#xff0c;一直以来颁发的https数字证书产品性价比较高&#xff0c;适合大多数个人网站和中小型企业。其中&#xff0c;DV基础型的泛域名https证书以申请简单、颁发速度快、价格低受到众多用户的欢迎。今天就随SSl盾小编了解P…...

MySQL bin-log日志恢复数据

目录 一、开启二进制日志 二、检查二进制日志是否开启 三、使用二进制日志备份和恢复 使用二进制日志备份恢复前先创建备份&#xff1a; 应用二进制日志&#xff1a; 扩展用法&#xff1a; 四、常见命令和操作 五. 使用 mysqlbinlog 工具查看二进制日志 1. 查看二进制…...

Linux网络命令——netstat

netstat是Linux系统中非常有用的网络工具&#xff0c;被称为是网络监控中的军工刀&#xff0c;足见其地位。 传统上&#xff0c;它用于问题确定而不是性能测量&#xff0c;但是也可用于查看网络上的流量&#xff0c;以确定性能问题是否由于网络阻塞引起。 netstat用于显示与I…...

手机怎么压缩图片?通过三种压缩操作

手机怎么压缩图片&#xff1f;在智能手机日益普及的今天&#xff0c;拍照分享已成为日常生活的一部分。然而&#xff0c;高质量的照片往往占用较大的存储空间&#xff0c;且在网络上传输时速度较慢。那么&#xff0c;如何在手机上压缩图片呢&#xff1f;本文将介绍三种实用的手…...

分布式CAP、BASE理论务必了解一下

分布式系统理论是计算机科学中的一个重要分支&#xff0c;它关注如何设计和实现能够跨多个物理或逻辑位置运行的系统。在分布式系统中&#xff0c;CAP定理和BASE理论是两个非常著名的理论&#xff0c;它们分别描述了分布式系统设计中的一些基本约束和原则。 CAP定理 CAP定理&…...

spring最常用的注解

核心注解 Component 描述&#xff1a;将类标记为 Spring 组件&#xff0c;以便自动检测。用途&#xff1a;通常用于标注服务类或其他支持类。 Controller 描述&#xff1a;将类标记为 Spring MVC 控制器。用途&#xff1a;用于处理 Web 请求。 Service 描述&#xff1a;将类标记…...

Docker:认识镜像仓库及其命令

文章目录 Docker Registry什么是Docker Registry 镜像仓库工作机制使用流程实际使用方法仓库的拉取机制 常用的镜像仓库---DockerHub什么是DockerHub私有仓库 镜像仓库命令docker logindocker pulldocker pushdocker searchdocker logout Docker Registry 什么是Docker Regist…...

使用 Django 创建 App

文章目录 步骤 1&#xff1a;创建 Django 项目步骤 2&#xff1a;创建 App步骤 3&#xff1a;配置 App步骤 4&#xff1a;编写代码步骤 5&#xff1a;运行服务器 在 Django 中&#xff0c;App 是组织代码的基本单元&#xff0c;它可以包含模型、视图、模板等组件&#xff0c;帮…...

java定时任务 设置开始时间、结束时间;每周一、四、六执行;并且隔n周执行。最后计算所有执行时间

java定时任务 设置开始时间、结束时间&#xff1b;每周一、四、六执行&#xff1b;并且隔n周执行。最后计算所有执行时间&#xff09; 定时任务需求程序设计依赖引入程序一、计算开始时间那周的周一时间二、根据executeTime和weekList.get(n),计算每个cron表达式。三、根据一和…...

linux的持续性学习

安装php 第一步&#xff1a;配置yum源 第二步&#xff1a;下载php。 yum install php php-gd php-fpm php-mysql -y 第三步&#xff1a;启动php。 systemctl start php-fpm 第四步&#xff1a;检查php是否启动 lsof -i :9000 计划任务 作用&am…...

MyBatis:概念简章

1. hello world 配置文件&#xff1a;mybatis-config.xml&#xff08;核心配置文件&#xff0c;用于配置连接的数据库信息&#xff09;&#xff08;一般一个&#xff09;XxxMapper.xml 该文件用于操作表&#xff08;执行sql语句&#xff09;&#xff08;一张表一个&#xff09;…...

有什么接码平台比较好用的

接码平台&#xff0c;也被称作短信接收平台或虚拟号码服务&#xff0c;主要是提供可以接收短信验证码的虚拟手机号码服务。这种服务通常被用于需要在网络平台上注册大量账号的情况&#xff0c;如营销推广、应用测试或是海淘购物时所需的手机号验证。下面将推荐几个较为好用的接…...

微服务之负载均衡器

1、负载均衡介绍 负载均衡就是将负载(工作任务&#xff0c;访问请求)进行分摊到多个操作单元(服务器&#xff0c;组件)上 进行执行。 根据负载均衡发生位置的不同&#xff0c; 一般分为服务端负载均衡和客户端负载均衡。 服务端负载均衡指的是发生在服务提供者一方&#xff…...

《时间管理九段》前四阶段学习笔记

文章目录 0.何谓时间管理九段0.1 第一段--把一件事做好0.2 第二段--把一天过好0.3 第三段--掌控两周内的固定日程0.4 第四段--掌控两周内的弹性时间0.5 第五段--科学管理3个月的项目事件0.6 第六段--实现一年的梦想0.7 第七段--明确一生的愿景0.8 第八段--正确补充和释放自身能…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...