WeSpeaker支持C++部署链路
WeSpeaker正式更新C++部署链路,推理引擎使用OnnxRuntime,支持从语音中提取Speaker Embedding信息,代码详见WeSpeaker/runtime[1]。
Libtorch和onnx的选择?
-
Speaker Embedding提取任务流程简单,并且声纹模型(如ResNet\ECAPA-TDNN)相对简单,只需简单几行代码即可导出Onnx模型;
-
Libtorch包过大,并且使用过程中需要和pytorch的版本一致,OnnxRuntime相对轻便,只需12M左右;
故采用OnnxRuntime推理引擎,欢迎贡献基于其它推理引擎的代码。
整体概括
整体包含四部分:frontend、speaker、utils、bin

frontend
用于计算fbank特征,该部分代码复用WeNet-frontend[2],支持读取wav文件,计算fbank特征。
speaker
包含主要的推理代码
-
speaker_model.h: 定义基类
SpeakerModel:便于实现对不同推理引擎的支持。 -
onnx_speaker_model.cc/h:继承基类
SpeakerModel,基于OnnxRuntime推理引擎。 -
speaker_engine.cc /h: 实现
SpeakerEngine类,供外部调用:
int EmbeddingSize();
-
返回Embedding的大小,用于推理前申请空间。
void ExtractFeature(const int16_t* data, int data_size,std::vector<std::vector<std::vector<float>>>* chunks_feat);
-
提取fbank特征,如果SamplesPerChunk<=0, 对整个句子提取特征,否则分块计算特征,块大小为SamplesPerChunk。
-
data:输入数据的地址,数据类型为int16
-
data_size: 输入数据的长度
-
chunks_feat: 输出特征,大小为[n, T, D]
-
void ExtractEmbedding(const int16_t* data, int data_size,std::vector<float>* avg_emb);
-
输入音频数据,提取Embedding特征。注意:对每个chunk提取embedding,最终取平均输出。
-
data: 输入数据地址,数据类型为int16
-
data_size: 输入数据的长度
-
avg_emb: 输出embedding特征
-
float CosineSimilarity(const std::vector<float>& emb1,const std::vector<float>& emb2)
-
计算两个embedding之间的余弦相似度得分。
utils
包含辅助函数,比如WriteToFile、ReadToFile将embedding信息写入文件或读取文件。
bin
提供两个示例。
1、asv_main.cc: 计算两条语音的相似度
export GLOG_logtostderr=1
export GLOG_v=2
onnx_dir=your_model_dir
./build/bin/asv_main \--enroll_wav wav1_path \--test_wav wav2_path \--threshold 0.5 \--speaker_model_path $onnx_dir/final.onnx
2、extract_emb_main.cc: 批量提取embedding并保存到txt文件中,同时计算RTF
export GLOG_logtostderr=1
export GLOG_v=2
wav_scp=your_test_wav_scp
onnx_dir=your_model_dir
embed_out=your_embedding_txt
./build/bin/extract_emb_main \--wav_list $wav_scp \--result $embed_out \--speaker_model_path $onnx_dir/final.onnx--SamplesPerChunk 80000 # 5s
benchmark
1、RTF
num_threads = 1
SamplesPerChunk = 80000
CPU: Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
| Model[3] | Params | RTF |
|---|---|---|
| ECAPA-TDNN (C=512) | 6.19 M | 0.018351 |
| ECAPA-TDNN (C=1024) | 14.65 M | 0.041724 |
| RepVGG-TINY-A0 | 6.26 M | 0.055117 |
| ResNet-34 | 6.63 M | 0.060735 |
| ResNet-152 | 19.88 M | 0.179379 |
| ResNet-221 | 23.86 M | 0.267511 |
| ResNet-293 | 28.69 M | 0.364011 |
2、结果一致性
使用voxceleb测试,模型为resnet-34
| Model | vox-O | vox-E | vox-H |
|---|---|---|---|
| ResNet-34-pt | 0.814 | 0.933 | 1.679 |
| ResNet-34-onnx | 0.814 | 0.933 | 1.679 |
欢迎大家使用WeSpeaker,服务于各种下游任务,也欢迎社区的贡献和宝贵建议!
参考资料
[1] WeSpeaker/runtime: https://github.com/wenet-e2e/wespeaker/tree/master/runtime/onnxruntime
[2] WeNet-frontend: https://github.com/wenet-e2e/wenet/tree/main/runtime/core/frontend
[3] Model: https://github.com/wenet-e2e/wespeaker/blob/master/docs/pretrained.md
相关文章:
WeSpeaker支持C++部署链路
WeSpeaker正式更新C部署链路,推理引擎使用OnnxRuntime,支持从语音中提取Speaker Embedding信息,代码详见WeSpeaker/runtime[1]。 Libtorch和onnx的选择? Speaker Embedding提取任务流程简单,并且声纹模型(如ResNet\E…...
window vscode编辑appsmith源码
前言 本来最开始用的idea打开wsl中的appsmith,卡得一批。最后没办法,用自己的电脑装成ubuntu server,然后vscode的远程开发对appsmith源码进行编辑。如果自己电脑内存16个G或者更大可能打开wsl中的估计会还好,我公司电脑只有8g所…...
操作系统面试题
操作系统一、简介篇1.解释一下什么是操作系统2.操作系统的主要功能3.软件访问硬件的几种方式4.操作系统的主要目的是什么5.为什么Linux系统下的应用程序不能直接在Windows下运行6.什么是用户态和内核态7.用户态和内核态如何切换8.什么是内核二、进程和线程篇1.多处理系统的优势…...
Kafka入门(七)
下面聊聊Kafka的配置参数,包括生产者的配置参数、Broker的配置参数、消费者的配置参数。 1、生产者配置参数 acks 该参数控制了生产者的消息发送确认机制,用于指定分区中必须有多少个副本成功接收到消息后生产者才会认为这条消息写入是成功的,…...
微服务介绍
微服务 微服务架构发展 微服务这个概念最早是在2011年5月威尼斯的一个软件架构会议上讨论提出的,用于描述一些作为通用架构风格的设计原则;2012年3月在波兰举行的Degree Conference大会,james lewis做演讲,讨论了微服务一些原则…...
搭建SpringBoot多模块微服务项目脚手架(三)
搭建SpringBoot多模块微服务项目脚手架(三) 文章目录搭建SpringBoot多模块微服务项目脚手架(三)1.概述项目结构2.接口返回统一信息模板2.1.封装返回统一信息思路介绍2.2.封装json数据格式1.导入依赖2.封装code码3.封装json格式模板4.使用统一返回信息3.接口统一请求信息模板3.1…...
对vue3中reactive、toref、torefs、ref的详细理解
reactive:将平常的一个对象转换成响应式对象。所谓的响应式对象就是当页面点击修改此对象时,页面无需刷新而在页面上的其他地方有用到这个对象的地方会自动同步修改过来例如: <template><div class"container"><di…...
C++ Primer Plus 第6版 读书笔记(6) 第 6 章 分支语句和逻辑运算符
第 6 章 分支语句和逻辑运算符 C是在 C 语言基础上开发的一种集面向对象编程、泛型编程和过程化编程于一体的编程语言,是C语言的超集。本书是根据2003年的ISO/ANSI C标准编写的,通过大量短小精悍的程序详细而全面地阐述了 C的基本概念和技术,…...
Java Class 加密工具 ClassFinal
Jar包加密工具 ClassFinal介绍环境依赖使用说明下载加密命令行示例maven插件方式无密码模式机器绑定启动加密后的jar启动参数给密码不加密码参数直接启动1. 密码文件获取2. 交互输入参考资料介绍 ClassFinal 是一款 java class 文件安全加密工具,支持直接加密jar包…...
【蓝桥杯集训·每日一题】AcWing 3555. 二叉树
文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴最近公共祖先一、题目 1、原题链接 3555. 二叉树 2、题目描述 给定一个 n 个结点(编号 1∼n)构成的二叉树,其根结点为 1 号点。 进行 m…...
【JavaScript运行原理之V8引擎】V8引擎解析JavaScript代码原理
1. 编程语言的执行 高级语言最终都需要编译为低级语言才能被硬件执行,越高级的语言中间的转换时间越长,效率越低,越低级的语言执行素的越快,但是由于缺少高级语言便捷的语法特性所以很难编写代码。 2. 大杂烩JS 它是作者在1995…...
C++11:智能指针
文章目录1. 介绍1.1 动态内存与智能指针2. 使用2.1 创建2.2 使用3. 原理3.1 RAII3.2 像指针一样使用3.3 支持智能指针对象拷贝auto_ptrRAII4. 标准库中的智能指针4.1 unique_ptr模拟实现4.2 shared_ptr引用计数模拟实现定制删除器4.3 weak_ptrshared_ptr造成的循环引用问题与sh…...
ccc-pytorch-RNN(7)
文章目录一、RNN简介二、RNN关键结构三、RNN的训练方式四、时间序列预测五、梯度弥散和梯度爆炸问题一、RNN简介 RNN(Recurrent Neural Network)中文循环神经网络,用于处理序列数据。它与传统人工神经网络和卷积神经网络的输入和输出相互独立…...
docker安装(linux)
安装需要的软件包 yum install -y yum-utils 设置stable镜像仓库(使用阿里云镜像) yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 更新yum软件包索引 yum makecache fast 安装DOCKER 引擎 yum -y…...
【数据库概论】10.1 事务及其作用
事务是一系列的数据库操作,是数据库应用程序的基本逻辑单元 10.1 事务的基本概念 1.事务 事务是用户定义的一个数据库操作序列,是一个具有原子性的操作,不可再分,一个事务内的操作要么全做、要么都不做。一般来说,一…...
通讯录(C++实现)
系统需求通讯录是一个可以记录亲人、好友信息的工具。本章主要利用C来实现一个通讯录管理系统系统中需要实现的功能如下:添加联系人:向通讯录中添加新人,信息包括(姓名、性别、年龄、联系电话、家庭住址)最多记录1000人显示联系人:显示通讯录…...
轻松掌握C++的模板与类模板,将Tamplate广泛运用于我们的编程生活
C提高编程 本阶段主要针对C泛型编程和STL技术做详细讲解,探讨C更深层的使用 泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。 模板 1.模板的概念 模板就是建立通用的模具,大大提高复用性 例如: 2.函数模板 C另一种编程思想称…...
pandas 数据预处理+数据概览 处理技巧整理(持续更新版)
这篇文章主要是整理下使用pandas的一些技巧,因为经常不用它,这些指令忘得真的很快。前段时间在数模美赛中已经栽过跟头了,不希望以后遇到相关问题的时候还去网上查(主要是太杂了)。可能读者跟我有一样的问题࿰…...
mmdetectionV2.x版本 训练自己的VOC数据集
mmdetection目录下创建data文件夹,路劲如图所示,不带yololabels 修改配置文件 mmdet/datasets/voc.py 配置图片格式 mmdet/datasets/xml_style.py 如果图片是jpg则改成jpg,是png格式就改成png,这里我不需要改,本…...
Shell - crontab 定时 git 拉取并执行 maven 打包
目录 一.引言 二.踩坑与实践 1.原始代码 2.mvn package 未执行与解决 [导入环境变量] 3.git pull 未执行与解决 [添加绝对路径] 三.总结 一.引言 git 任务部署在通道机,每天6点需要定时更新 jar 包并打包上线,所以需要在 linux 服务器上ÿ…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
