代码杂谈 之 pyspark如何做相似度计算
在 PySpark 中,计算 DataFrame 两列向量的差可以通过使用 UDF(用户自定义函数)和 Vector 类型完成。这里有一个示例,展示了如何使用 PySpark 的
- pyspark.ml.linalg.Vectors
- pyspark.sql.functions.udf
来实现这一功能:
首先,确保你已经安装了 PySpark 并且正确设置了 SparkSession。接下来,你可以按照以下步骤操作:
- 导入必要的模块。
- 创建一个简单的 DataFrame 示例,其中包含两列向量。
- 定义一个计算向量差的函数。
- 将此函数转换为 UDF。
- 使用 UDF 在 DataFrame 上添加一列来存储向量差。
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, FloatType
from pyspark.ml.linalg import Vectors# 创建 SparkSession
spark = SparkSession.builder \.appName("Vector Difference in PySpark") \.getOrCreate()# 创建示例 DataFrame
data = [(Vectors.dense([1.0, 2.0]), Vectors.dense([4.0, 6.0])),(Vectors.dense([2.0, 3.0]), Vectors.dense([5.0, 7.0]))]
df = spark.createDataFrame(data, ["vectorA", "vectorB"])# 定义计算向量差的函数(余弦距离/欧几里得距离)
def cos_sim(a,b):return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))def euclidean_distance(v1, v2):return float(np.linalg.norm(np.array(v1) - np.array(v2)))cos_sim_udf = F.udf(cos_sim,FloatType())# 在 DataFrame 上使用 UDF 添加新列
tmp_df = tmp_df.withColumn("cos_sim", cos_sim_udf('vectorA','vectorB'))
# 打印结果
df.show()
相关文章:
代码杂谈 之 pyspark如何做相似度计算
在 PySpark 中,计算 DataFrame 两列向量的差可以通过使用 UDF(用户自定义函数)和 Vector 类型完成。这里有一个示例,展示了如何使用 PySpark 的 pyspark.ml.linalg.Vectorspyspark.sql.functions.udf 来实现这一功能:…...

混剪素材哪里找?分享8个热门素材网站
今天我们来深入探讨如何获取高质量的混剪素材,为您的短视频和自媒体制作提供最佳资源。在这篇指南中,我将介绍几个热门的素材网站,让您轻松掌握素材获取的技巧,并根据百度SEO排名规则,优化关键词的使用,确保…...

临床应用的深度学习在视网膜疾病的诊断和转诊中的应用| 文献速递-视觉通用模型与疾病诊断
Title 题目 Clinically applicable deep learning for diagnosis and referral in retinal disease 临床应用的深度学习在视网膜疾病的诊断和转诊中的应用 01 文献速递介绍 诊断成像的数量和复杂性正在以比人类专家可用性更快的速度增加。人工智能在分类一些常见疾病的二…...
中继器简介
一、网络信号衰减问题 现在的网路信号有两种,一种是电信号,另一种的光信号,电信号在网线、电话线或者电视闭路线中传输,光信号在光缆中传输,但是不管是以那种信号进行传输,随着传输距离的增加,电…...
websocket 前端项目js示例
websocket前端 和服务端websocket通信示例, 前端直接使用h5的内置对象 WebSocket 来创建和管理 WebSocket 连接,以及可以通过该连接发送和接收数据。 这个对象都是是事件方式来处理和与后端交互数据, 他们分别是 onopen打开, onclose关闭, o…...

webapi跨越问题
由于浏览器存在同源策略,为了防止 钓鱼问题,浏览器直接请求才不会有跨越的问题 浏览器要求JavaScript或Cookie只能访问同域下的内容 浏览器也是一个应用程序,有很多限制,不能访问和使用电脑信息(获取cpu、硬盘等&#…...
你知道 npmrc 文档吗? ---- npmrc 关键作用介绍
你知道 npmrc 文档吗? ---- npmrc 关键作用介绍 你知道 npmrc 文档吗? ---- npmrc 关键作用介绍如何修改配置呢?日常开放常常需要置哪些信息呢?registry 信息配置限定包认证信息代理配置缓存配置安装行为 参考 你知道 npmrc 文档吗…...
发现 Laravel 中的 api 响应时间明显过长
背景 近期在排查网站后台页面功能时 发现,部分查询页面,明显响应时间过长(12秒),不合理 优先排查 接口运行时长 经过打印,发现代码是正常的,且时间仅需不到一秒 进一步怀疑是 VUE框架的渲染加载…...

如何在MySQL中创建不同的索引和用途?
目录 1 基本的 CREATE INDEX 语法 2 创建单列索引 3 创建多列索引 4 创建唯一索引 5 创建全文索引 6 在表创建时添加索引 7 使用 ALTER TABLE 添加索引 8 删除索引 9 索引管理的最佳实践 10 示例 在 MySQL 中,索引(index)是一种用于…...
maxwell同步mysql到kafka(一个服务器启动多个)
创建mysql同步用户 CREATE USER maxwell% IDENTIFIED BY 123456; GRANT ALL ON maxwell.* TO maxwell%; GRANT SELECT, REPLICATION CLIENT, REPLICATION SLAVE on *.* to maxwell%; 开启mysql binlog a.修改 /etc/my.cnf 配置 log-binmysql-bin # 开启binlog binlog-forma…...

实用软件分享---简单菜谱 0.3版本 几千种美食(安卓)
专栏介绍:本专栏主要分享一些实用的软件(Po Jie版); 声明1:软件不保证时效性;只能保证在写本文时,该软件是可用的;不保证后续时间该软件能一直正常运行;不保证没有bug;如果软件不可用了,我知道后会第一时间在题目上注明(已失效)。介意者请勿订阅。 声明2:本专栏的…...
网络学习(14)|RESTful API设计:构建优雅的Web服务
文章目录 设计原则最佳实践命名与URI设计状态码与响应格式HTTP状态码详解响应格式选择 在当今的互联网世界中,RESTful API已成为构建可扩展、可维护和高性能Web服务的标准。本文将深入探讨RESTful API的设计原则、资源命名与URI设计的最佳实践,以及请求与…...
【开源】APIJSON 框架
简述 APIJSON是一个关于API和JSON的综合技术或框架,一种专为API设计的JSON网络传输协议,以及基于这套协议实现的ORM库。 1. 定义与特点: APIJSON是一种基于接口的JSON传输结构协议,它允许客户端定义任何JSON结构来向服务端发起…...

R语言探索与分析18-基于时间序列的汇率预测
一、研究背景与意义 汇率是指两个国家之间的货币兑换比率,而且在国家与国家的经济交流有着举足轻重的作用。随着经济全球化的不断深入,在整个全球经济体中,汇率还是一个评估国家与国家之间的经济状况和发展水平的一个风向标。汇率的变动会对…...

30岁迷茫?AI赛道,人生新起点
前言 30岁,对于许多人来说,是一个人生的分水岭。在这个年纪,有些人可能已经在某个领域取得了不小的成就,而有些人则可能开始对未来的职业方向感到迷茫。如果你正处于这个阶段,那么你可能会问自己:30岁转行…...

开门预警系统技术规范(简化版)
开门预警系统技术规范(简化版) 1 系统概述2 预警区域3 预警目标4 功能需求5 功能条件6 显示需求7 指标需求1 系统概述 开门预警系统(DOW),在自车停止开门过程中,安装在车辆的传感器(如安装在车辆后保险杆两个角雷达)检测从自车后方接近的目标车(汽车、摩托车等)的相对…...

Django与MySQL:配置数据库的详细步骤
文章目录 Django-MySQL 配置配置完执行数据迁移,如果报错: Error loading MySQLdb module, Django-MySQL 配置 # settings.pyDATABASES {# 默认配置sqlite3数据库# default: {# ENGINE: django.db.backends.sqlite3,# NAME: BASE_DIR / db.sqli…...
GPT-4o short description
GPT-4o,作为OpenAI最新推出的人工智能模型,无疑在人工智能领域掀起了新的波澜。 一、版本间的对比分析 与前一版本GPT-4相比,GPT-4o在多个方面进行了显著的改进和优化。首先,在参数规模上,GPT-4o达到了2000亿个参数&…...
MATLAB 矩阵
创建矩阵直接输入:使用 zeros, ones, eye 函数:使用 rand, randi 函数:使用 diag 函数: 矩阵操作矩阵加法和减法:矩阵乘法:矩阵转置:矩阵求逆:矩阵分解:矩阵大小…...
LED灯的功率以及好的品牌推荐
LED灯的功率选择主要根据使用场景、照明需求以及灯具类型来决定。常见的LED灯功率范围在0.5W到100W之间,不同的功率范围适用于不同的场景。 对于小型照明设备,如小夜灯或手电筒,通常选择0.5W到3W的LED灯,足以满足基本的照明需求。…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...