当前位置: 首页 > news >正文

【AI大模型】Transformers大模型库(八):大模型微调之LoraConfig

 

目录

一、引言 

二、LoraConfig配置参数

2.1 概述

2.2 LoraConfig参数说明

2.3 代码示例

三、总结


一、引言 

 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍LoraConfig配置参数

二、LoraConfig配置参数

2.1 概述

LoraConfig是Hugging Face transformers库中用于配置LoRA(Low-Rank Adaptation)的类。LoRA是一种用于微调大型语言模型的轻量级方法,它通过添加低秩矩阵到预训练模型的权重上来实现适应性调整,从而在不显著增加模型大小的情况下提升特定任务的性能。这种方法特别适合于资源有限的环境,因为它减少了存储和计算的需求。

2.2 LoraConfig参数说明

LoraConfig允许用户设置以下关键参数来定制LoRA训练。

  • r: 低秩矩阵的秩,即添加的矩阵的第二维度,控制了LoRA的参数量。
  • alpha: 权重因子,用于在训练后将LoRA适应的权重与原始权重相结合时的缩放。
  • lora_dropout: LoRA层中的dropout率,用于正则化。
  • target_modules: 指定模型中的哪些模块(层)将应用LoRA适应。这允许用户集中资源在对任务最相关的部分进行微调。
  • bias: 是否在偏置项上应用LoRA,通常设置为'none'或'all'。
  • task_type: 指定任务类型,如'CAUSAL_LM',以确保LoRA适应正确应用到模型的相应部分。

2.3 代码示例

这是一段LoraConfig配置Qwen2的代码,指定模型中的"q_proj"、"v_proj"等层应用LoRA,了解具体有哪些层,可以通过print(model)查看。

config = LoraConfig(r=64,lora_alpha=16,target_modules=["q_proj", "v_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],lora_dropout=0.05,bias="none",task_type="CAUSAL_LM",
)model = get_peft_model(model, config)
print_trainable_parameters(model)

三、总结

本文简要介绍LoraConfig的配置参数情况,具体的机遇peft对大模型进行微调后面单独开一页详细讲解。

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

相关文章:

【AI大模型】Transformers大模型库(八):大模型微调之LoraConfig

目录 一、引言 二、LoraConfig配置参数 2.1 概述 2.2 LoraConfig参数说明 2.3 代码示例 三、总结 一、引言 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。 🤗 Transformers …...

8-1RT-Thread消息队列

8-1RT-Thread消息队列 消息队列又称队列,是一种常用于线程间通信的数据结构。 消息队列控制块里有两个链表,空闲列表用来挂接空的小几块,另一个链表是用来挂接存有消息的消息框。其中消息链表头指向消息队列当中的第一个消息框,而…...

解除网站IP抓取限制的方法有哪些?

在爬取网站数据时,经常会遇到IP被限制,导致返回的数据无法显示或者直接空白的情况。这时候就需要采取一些方法来解除网站对IP的爬取限制。IP代理是帮助用户绕过网站限制,保持稳定连接,实现数据顺畅爬取的重要解决方案。 1、IP代理…...

“手撕”二叉树的OJ习题

故事的开头,我们先来三道不是oj的开胃菜,练练手感,后面9道都是OJ题。 目录 第一题 第二题 第三题 第四题 第五题 第六题 第七题 第八题 第九题 第十题 第十一题 第一题 二叉树前序非递归遍历实现 。 首先我们需要一个栈来存放二…...

Linux Mint 21.3简介

Linux Mint 21.3是一个更新版本,其中包含了许多新特性和改进。以下是一些主要更新内容: 1. Cinnamon 6.0桌面环境:Linux Mint 21.3采用了最新的Cinnamon 6.0桌面环境,带来了新的功能和改进,例如支持Wayland会话&#…...

C++11 面试题整理

C面试题 1 菱形继承 2 多态 多态实现原理: 静态多态 动态多态 静态多态: 依赖函数重载,编译期确定。 函数重载:允许在同一作用于内声明多个功能类似的同名函数,函数列表不同。注意:不能仅通过返回值类型…...

【智能制造-2】焊缝跟踪

焊缝跟踪? 焊缝跟踪:指在焊接位置前方安装光学传感器进行数据采集,然后传输到焊接机器人,进行自适应的各种模糊控制算法校正焊接机器人或专机的轨迹,实现自适应控制,达到实时的焊缝跟踪。 焊缝跟踪的方法…...

优思学院|用ChatGPT快速完成数据分析图表【柏累托图法】

数据分析是很多行业的人不可少的一部分,尤其是质量工程师更是日常的工作。然而,随着科技的进步,人工智能(AI)将逐渐承担起数据计算的工作,这意味着未来的质量工程师需要具备的不仅仅是计算能力,…...

[晕事]今天做了件晕事37 extern “C“ 被认为了是外部函数

最近看到一个函数声明是 extern “C" void _dump(); 这里的声明是要告诉编译器,这个_dump是C语言的符号,没有经过mangle过的。但是这个关键字可能让人混淆是外部函数。因为这个关键字可以声明外部函数。这也算是一词多用的一个普遍问题。关键的关键…...

问题:关于醋酸钠的结构,下列说法错误的是() #媒体#媒体

问题:关于醋酸钠的结构,下列说法错误的是() A.有极性键 B.有非极性键 C.是极性分子 D.是离子晶体 参考答案如图所示...

网络安全(补充)

同步包风暴(SYN Flood)攻击者假造源网址发送多个同步数据包(SYN Packet)给服务器,服务器因无法收到确认数据包(ACK Packet),使TCP/IP协议三次握手无法顺利完成,因而无法建…...

Redis集群(3)

集群扩容 节点配置和启动 我们要加入两个节点,主节点端口为6903,从节点端口为6933。配置与6900节点类似,不再赘述。启动这两个节点: ./redis-server ../conf/cluster_m_6903.conf ./redis-server ../conf/cluster_s_6933.conf加…...

防止Selenium被检测 Google Chrome 125

背景 最近在使用selenium自动播放学习课程,相信大家也有一些类似的使用场景。 能自动化的事情,绝不自己干。 为防止被检测是机器人做题,刷视频,需要做一些小调整。 先来看作为服务方维护者,是如何检测是Selenium打…...

LeetCode 算法:螺旋矩阵c++

原题链接🔗:螺旋矩阵 难度:中等⭐️⭐️ 题目 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&…...

【全开源】医护上门系统小程序APP公众号h5源码

医护上门系统:健康守护,就在您身边 🚪引言:开启全新的医护模式 在快节奏的现代生活中,健康问题往往成为我们关注的焦点。而“医护上门系统”正是为了满足这一需求,将专业的医疗服务送到您的家中。这一创新…...

结构体<C语言>

导言 结构体是C语言中的一种自定义类型,它的值(成员变量)可以是多个,且这些值可以为不同类型,这也是和数组的主要区别,下面将介绍它的一些基本用法,包括:结构体的创建、结构体变量的…...

点云分割报告整理(未完成版-每天写一点)

体积占用网格表示对点进行体素化,然后使用3d卷积神经网络来学习体素级语义。由于点云的稀疏性,体素化效率低,为避免较高的计算成本而忽略了细节。此外,由于同一体素内的所有点都被赋予了相同的语义标签,因此精度受到限…...

python基础 002 - 1 基础语法

1 标识符(identifier),识别码,表明身份 身份证,ID 定义:在编程语言中标识符就是程序员自己规定的具有特定含义的词,比如类名称、属性名称、变量名等, 在Python 中,pyt…...

浅谈Web开发的三大主流框架:Angular、React和Vue.js

在现代Web开发领域,Angular、React和Vue.js作为三大主流前端框架,各自拥有独特的特点和优势,为开发者提供丰富的选择。让我们更深入地了解这三大框架,并通过一些小型样例来展示它们的特性。 Angular Angular是一个完整的前端框架…...

使用net.sf.mpxj读取project的.mpp文件

1、导入.mpp文件 public void importMppFile(String updateType, MultipartFile multipartFile) {try (InputStream inputStream multipartFile.getInputStream()) {// 读取文件的组件MPPReader mppReader new MPPReader();// 注意,如果在这一步出现了读取异常&a…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...