DeepSeek-V2-Chat多卡推理(不考虑性能)
@TOC
本文演示了如何使用accelerate推理DeepSeek-V2-Chat(裁剪以后的模型,仅演示如何将权值拆到多卡)
代码
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from accelerate import init_empty_weights
import sys
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.utils import get_balanced_memory
from torch.cuda.amp import autocast
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any
import torch.cuda
import multiprocessing as mp@dataclass
class _ProfilerState:cls: Anyobject: Any = Noneclass TorchDumpDispatchMode(TorchDispatchMode):def __init__(self,parent):super().__init__()self.parent=parentself.op_index=0self.cvt_count=0def get_max_gpu_id(self,tensors):max_gpu_id = -1max_index = -1tensor_index=[]for i, tensor in enumerate(tensors):if not isinstance(tensor, torch.Tensor):continuetensor_index.append(i)if tensor.is_cuda:gpu_id = tensor.get_device()if gpu_id > max_gpu_id:max_gpu_id = gpu_idmax_index = iif max_gpu_id == -1:return None, None,tensor_indexreturn max_index, max_gpu_id,tensor_indexdef convert(self,op_type,tensor_list):index, gpu_id,tensor_index = self.get_max_gpu_id(tensor_list)if index is None:returnkeep_index=set(tensor_index)-set([index])device=torch.device(f"cuda:{gpu_id}")for i in keep_index:if tensor_list[i].device!=device:#print(f"{op_type} {i} {tensor_list[i].device} -> {device}")tensor_list[i].data=tensor_list[i].data.to(device,non_blocking=True)#卡间通信是串行的,所有多stream并不能充分提升性能def __torch_dispatch__(self, func, types, args=(),kwargs=None):func_packet = func._overloadpacketif kwargs is None:kwargs = {}op_type=f"{func}"self.op_index+=1if isinstance(args, list) or isinstance(args, tuple):self.convert(op_type,args)elif isinstance(args[0], list) or isinstance(args[0], tuple):self.convert(op_type,args[0])else:print(op_type)output= func(*args,**kwargs)return outputclass TorchDumper:def __init__(self,**kwargs):self.p= _ProfilerState(TorchDumpDispatchMode)self.kwargs=kwargsdef __enter__(self):if self.p.object is None:o = self.p.cls(self,**self.kwargs)o.__enter__()self.p.object = oelse:self.p.object.step()return selfdef __exit__(self, exc_type, exc_val, exc_tb):TorchDumper._CURRENT_Dumper = Noneif self.p.object is not None:self.p.object.__exit__(exc_type, exc_val, exc_tb)del self.p.objectmodel_name = "./models/deepseek-ai/DeepSeek-V2-Chat/"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
max_memory = {i: "23GB" for i in range(8)}
sys.path.insert(0,model_name)model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,attn_implementation="eager",torch_dtype=torch.bfloat16)
model=model.eval()no_split_module_classes = ['DeepseekV2MLP','DeepseekV2Attention']
#no_split_module_classes = ['DeepseekV2DecoderLayer']device_map = infer_auto_device_map(model,max_memory=max_memory,no_split_module_classes=no_split_module_classes,dtype='float16')model = dispatch_model(model, device_map=device_map)
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_idmessages = [{"role": "user", "content": "Write a piece of quicksort code in C++"} ]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
with TorchDumper():outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
相关文章:
DeepSeek-V2-Chat多卡推理(不考虑性能)
TOC 本文演示了如何使用accelerate推理DeepSeek-V2-Chat(裁剪以后的模型,仅演示如何将权值拆到多卡) 代码 import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig from accelerate import init_empty_weights import sys from acce…...
算法题day42(补5.28日卡:动态规划02)
今天的动态规划都是二维的,与昨日不同。 一、刷题: 1.leetcode题目 62. 不同路径 - 力扣(LeetCode)(medium,) 解决: class Solution:def uniquePaths(self, m: int, n: int) -> int:dp …...
分治与递归
实验一:分治与递归 【实验目的】 深入理解分治法的算法思想,应用分治法解决实际的算法问题。 【实验性质】 验证性实验(学时数:2H) 【实验内容与要求】 1、设有n2k个运动员要进行网球循环赛。现要设计一个满足以…...

Spring中IOC容器
IoC IOC容器 IoC是一种设计思想,面向对象编程 Spring通过IoC管理所有Java对象的实例化和初始化,控制对象之间依赖关系 将IoC容器管理的Java对象称为Spring Bean,与new创建的对象没有区别 控制反转(IoC Inversion of Controle&a…...

php redis分布式锁
一,概念 在PHP中实现分布式锁通常可以使用数据库、缓存系统(如Redis)或者其他中央存储系统来保证在分布式系统中的数据一致性与同步。秒杀下单、抢红包等等业务场景,都需要用到分布式锁。 常规方案大概有七中 方案一:…...
kotlin 中的布尔
1、kotlin中内置的Boolean类型,可以有true与false两个值的布尔对象。 布尔值的内置运算有(跟很多语言如java、js一摸一样): ||——逻辑或&&——逻辑与!——逻辑非 fun main() {val a: Boolean trueval b: Boolean fa…...

有哪些ai聊天推荐?简单分享三款
有哪些ai聊天推荐?在当今数字化时代,人工智能(AI)聊天软件已经成为我们日常生活中不可或缺的一部分。无论是与朋友、家人还是同事交流,这些智能聊天软件都能为我们提供极大的便利。那么,市面上有哪些值得推…...

Python第二语言(十、Python面向对象(上))
目录 1. 标记变量的基础类型 2. 初识对象 2.1 使用对象组织数据 3. 成员变量 3.1 类和类成员的定义 3.2 成员变量和成员方法使用 3.3 成员方法的定义语句 4. 类和对象class Clock: def ring(self): 4.1 创建类对象的语法:对象名 类名称() 4.2 用生活中的…...

SolidWorks 2016 SP5安装教程
软件介绍 Solidworks软件功能强大,组件繁多。 Solidworks有功能强大、易学易用和技术创新三大特点,这使得SolidWorks 成为领先的、主流的三维CAD解决方案。 SolidWorks 能够提供不同的设计方案、减少设计过程中的错误以及提高产品质量。SolidWorks 不仅…...

为什么高考志愿只选计算机专业?
刚刚高考结束,不知道各位学弟学妹考的怎么样啊? 高考毕竟是对十二年寒窗苦读的评判,也是很多人改变命运的机会。很多同学每天等待出分的过程很煎熬,既吃不好也玩不好(os:这种同学还挺多的)。 但…...
GPT大模型微调-提高垂直领域回答质量
微调一个大模型并测试微调后的效果是一个很好的学习实践。下面是一个逐步指导,帮助你使用一个较小的预训练大模型进行微调,并测试其效果。我们将使用 Hugging Face 的 Transformers 库和一个较小的预训练模型,如 DistilBERT。这个库非常流行且易于使用。 实现步骤 步骤 1:…...

全网首发-Docker被封后的代理设置教程
最近上交、科大以及阿里的一些docker镜像,好像都因为不可控力导致无法访问。 所以,之前好多正常的一些镜像的打包都会报错: 比如: #1 [internall load build definition from Dockerfile#1transferring dockerfile:972B done#1 D…...
代码随想录算法训练营第五十七天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和、392.判断子序列
代码随想录算法训练营第五十七天 1143.最长公共子序列 题目链接:1143.最长公共子序列 确定dp数组以及下标的含义:dp[i][j] :以下标i - 1为结尾的text1,和以下标j - 1为结尾的text2,最长重复子数组长度为dp[i][j]确…...

RocketMQ事务性消息
RocketMQ事务性消息是一定能保证消息发送成功的 事务消息发送步骤: (1)发送方将半事务消息发送至RocketMQ服务端。 (2)RocketMQ服务端将消息持久化之后,向发送方返回ack确认消息已经发送成功。由于消息为…...

mysql (事物)
一.什么是事物 事物是一组操作的集合,不可分割的工作单位,事物会把所有的操作当作一个整体一起向系统提交或撤销操作请求,就是这些操作要么一起成功要么一起失败。 二.事物操作 (这个就是一个理解) 1.事务特性 原子性…...

kotlin 中的字符串
一、字符类访问 1、字符串的访问跟js一样,可以使用索引来访问或者直接循环。 fun main() {val a: String "2024"// 方式一:for (item in a) {println(item) // 输出每一个字符}// 方式二:println("${a[0]}, ${a[1]}, ${a[2…...

网站线上模板建设的优缺点
优点: 1.搭建的时间短,在线建站,只需要登录注册然后选择网站模板创建网站即可管理自己的网站后台,就几步操作就可以实现。 2.网站出错率少,因为有很多用户在使用,前期所报出来的问题就已经一一…...
哲学家进餐问题
1.最多允许四个哲学家同时进餐,保证有一个筷子是空闲的,从而保证能有有一个哲学家成功进餐,而不导致死锁 semaphore chopstick[5] {1, 1, 1, 1, 1}, mutex4; Pi(){do{think...P(mutex);P(chopstick[i]);P(chopstick[(i1)%5);eat...V(mutex)…...

无人机遥感在农林信息提取中的实现方法与GIS融合应用
在新一轮互联网信息技术大发展的现今,无人机、大数据、人工智能、物联网等新兴技术在各行各业都处于大爆发的前夜。为了将人工智能方法引入农业生产领域。首先在种植、养护等生产作业环节,逐步摆脱人力依赖;在施肥灌溉环节构建智慧节能系统&a…...
联想测开一面(电话面试)笔试60%
联想测开一面(电话面试)笔试60% 3.21 无自我介绍 基本问项目,问实习 对python自动化测试了解多少 讲一下python中打包和解包的概念 学校无测试相关课程,平时用什么平台去学习的 计算机底层实现原理简要说说(软硬结合&…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...