当前位置: 首页 > news >正文

AI-知识库搭建(二)GPT-Embedding模型使用

上一篇:AI-知识库搭建(一)腾讯云向量数据库使用-CSDN博客

一、Embedding模型

Embedding模型是一种将高维度的离散数据(如文本、图像、音频等)映射到低维度的连续向量空间的技术。这种技术广泛应用于自然语言处理(NLP)、推荐系统、搜索引擎、问答系统等领域,能够显著提高数据处理的效率和准确性。

二、模型text-embedding-ada-002

openai官方: https://platform.openai.com/ (需要注册,充值)

"Text-Embedding-Ada-002" 是OpenAIAP|中的一个预训练文本嵌入模型,它属于"Ada" 系列的-个变种。Ada系列的模型专注于文本分类和语言理解任务,它在理解语义和推断方面有较好的性能。
这个模型可以用于各种自然语言处理任务,例如文本分类、情感分析、语义理解等。相较于一般的
通用语言模型,"Text-Embedding-Ada-002"可能更适合于需要较高语义理解和推断能力的任务。

三、引用依赖


Chatgpt-Java | Unfbx | Chatgpt-Java

        <dependency><groupId>com.unfbx</groupId><artifactId>chatgpt-java</artifactId><version>1.1.5</version></dependency><dependency><groupId>com.squareup.okhttp3</groupId><artifactId>okhttp</artifactId><version>4.9.2</version></dependency>

四、application.properties配置

#GPT代理地址IP/域名
proxy.hostname=${PROXY_HOSTNAME:xxxxxxx.com}
proxy.hostport=${PROXY_HOSTPORT:123456}
#GPT密钥
openai.sessonkey=${OPENAI_SESSONKEY:sk-123456}
#GPT语言模型
openai.model=${OPENAI_MODEL:text-embedding-ada-002}

五、初始化客户端

import com.unfbx.chatgpt.OpenAiClient;
import okhttp3.OkHttpClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.stereotype.Component;import java.net.InetSocketAddress;
import java.net.Proxy;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;@Component
public class InitOpenAiClient {@Value("${proxy.hostname:}")private String proxyHostname;@Value("${proxy.hostport:}")private Integer proxyHostport;@Value("${openai.sessonkey:}")private String  openaiSessionKey;@Beanpublic OpenAiClient openAiClient(){Proxy proxy = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHostname, proxyHostport));//代理ip,端口OkHttpClient okHttpClient = new OkHttpClient.Builder()//自定义代理.proxy(proxy).connectTimeout(30, TimeUnit.SECONDS)//自定义超时时间.writeTimeout(30, TimeUnit.SECONDS)//自定义超时时间.readTimeout(30, TimeUnit.SECONDS)//自定义超时时间.build();OpenAiClient client = OpenAiClient.builder()//支持多key传入,请求时候随机选择.apiKey(Arrays.asList(openaiSessionKey)).okHttpClient(okHttpClient).build();return client;}}

六、封装接口类

import cn.hutool.core.collection.CollectionUtil;
import com.unfbx.chatgpt.OpenAiClient;
import com.unfbx.chatgpt.entity.embeddings.Embedding;
import com.unfbx.chatgpt.entity.embeddings.EmbeddingResponse;
import com.unfbx.chatgpt.entity.embeddings.Item;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;import javax.annotation.Resource;
import java.util.LinkedList;
import java.util.List;/*** 获取Ai模型能力* 接口文档 https://chatgpt-java.unfbx.com/* 源码、demo https://github.com/Grt1228/chatgpt-java* @Date 2024/3/6 13:49*/
@Component
@Slf4j
public class AiManager {@ResourceOpenAiClient openAiClient;@Value("${openai.model:}")private String openAiModel;/*** 该接口获取可能不会非常快,有一定的时延性* 获取文本的embedding(向量)* @param input* @return 返回数组,排列顺序对应传入的数组参数*/public List<Item> getEmbedding(List<String> input) {try {Embedding embedding = Embedding.builder().input(input).model(openAiModel).build();EmbeddingResponse embeddings = openAiClient.embeddings(embedding);if (CollectionUtil.isEmpty(embeddings.getData())) {return new LinkedList<>();}List<Item> data = embeddings.getData();return data;} catch (Exception ex) {log.error("调用AI模型报错",ex);throw new RuntimeException(ex.getMessage());}}
}

GPT的引用,在这里我们只使用到了它的embeddings接口,对我们的原始数据做向量化处理。处理后的向量就可以直接存入向量数据库,为最后的问题答案匹配准备。

相关文章:

AI-知识库搭建(二)GPT-Embedding模型使用

上一篇&#xff1a;AI-知识库搭建&#xff08;一&#xff09;腾讯云向量数据库使用-CSDN博客 一、Embedding模型 Embedding模型是一种将高维度的离散数据&#xff08;如文本、图像、音频等&#xff09;映射到低维度的连续向量空间的技术。这种技术广泛应用于自然语言处理&…...

qt网络事件之QSocketNotifier

简介 QSocketNotifier用于处理网络事件的,即事件处理器 结构 #mermaid-svg-xcNdAyHNkKqNCLQY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-xcNdAyHNkKqNCLQY .error-icon{fill:#552222;}#mermaid-svg-xcNdAyHNk…...

如何统计EXCEL中的数据透视表的信息?

也没什么可分析的&#xff0c;直接上代码&#xff0c;看看是不是你需要的&#xff1a; Sub GetPVT() 定义一个1000行的数组&#xff0c;如果你预判工作簿中数据透视表数量可能大小1000&#xff0c;那就改成10000&#xff0c;甚至10万&#xff0c;以确保能大于数据透视表数量即…...

日本结构型产品及衍生品业务变迁报告

日本结构型产品及衍生品业务变迁报告 一、业务发展阶段 阶段一&#xff1a;2000年之前 零售结构型产品几乎不存在&#xff0c;主要销售对象为机构投资者或企业。主要策略为卖出看涨期权&#xff08;covered call&#xff09;。会计记录准则对业务有重要影响&#xff0c;例如…...

解决Mac无法上网/网络异常的方法,重置网络

解放方法 1、前往文件夹&#xff1a;/Library/Preferences/SystemConfiguration 2 、在弹窗中输入上边的地址 3 、把文件夹中除了下图未选中的文件全部删掉&#xff0c;删除时需要输入密码 4 、重启mac 电脑就搞定了。...

[12] 使用 CUDA 进行图像处理

使用 CUDA 进行图像处理 当下生活在高清摄像头的时代&#xff0c;这种摄像头能捕获高达1920*1920像素的高解析度画幅。想要实施的处理这么多的数据&#xff0c;往往需要几个TFlops地浮点处理性能&#xff0c;这些要求CPU也无法满足通过在代码中使用CUDA&#xff0c;可以利用GP…...

MyBatisPlus代码生成器(交互式)快速指南

引言 本片文章是对代码生成器(交互)快速配置使用流程&#xff0c;更多配置方法可查看官方文档&#xff1a; 代码生成器配置官网 如有疑问欢迎评论区交流&#xff01; 文章目录 引言演示效果图引入相关依赖创建代码生成器对象引入Freemarker模板引擎依赖支持的模板引擎 MyBat…...

深度学习模型训练之日志记录

在深度学习模型训练过程中&#xff0c;进行有效的训练日志记录是至关重要的。以下是一些常见的策略和工具来实现这一目标&#xff1a; 1. 使用TensorBoard TensorBoard是TensorFlow提供的一个可视化工具&#xff0c;用于记录和展示训练过程中的各种指标。 设置TensorBoard&a…...

深入理解Python中的装饰器

装饰器是Python中一个强大且灵活的工具,允许开发者在不修改函数或类定义的情况下扩展或修改其行为。装饰器广泛应用于日志记录、访问控制、缓存等场景。本文将详细探讨Python中的装饰器,包括基本概念、函数装饰器和类装饰器、内置装饰器以及装饰器的高级用法。 目录 装饰器概…...

基于springboot的人力资源管理系统源码数据库

传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;员工信息因为其管理内容繁杂&#xff0c;管理数量繁多导致手工进行处理不能满足广大用户的…...

如何舒适的使用VScode

安装好VScode后通常会很不好用&#xff0c;以下配置可以让你的VScode变得好用许多。 VScode的配置流程 1、设置VScode中文2、下载C/C拓展&#xff0c;使代码可以跳转3、更改编码格式4、设置滚轮缩放5、设置字体6、设置保存自动改变格式7、vscode设置快捷代码 1、设置VScode中文…...

【微信小程序】开发环境配置

目录 小程序的标准开发模式&#xff1a; 注册小程序的开发账号 安装开发者工具 下载 设置外观和代理 第一个小程序 -- 创建小程序项目 查看项目效果 第一种&#xff1a;在模拟器上查看项目效果 项目的基本组成结构 小程序代码的构成 app.json文件 project.config…...

启动盘镜像制作神器(下载即用)

一、简介 1、一款受欢迎且功能强大的USB启动盘制作工具,允许用户将操作系统镜像文件(如Windows或Linux的ISO文件)制作成可引导的USB启动盘。它支持多种操作系统,包括Windows、Linux和各种基于UEFI的系统。Rufus的一个显著特点是制作速度快,据称其速度比其他常用工具如UNet…...

PHP框架详解 - Symfony框架

引言 在现代Web开发中&#xff0c;PHP作为一种灵活且功能强大的编程语言&#xff0c;广泛应用于各种Web应用程序的开发中。为了提高开发效率、代码的可维护性和可扩展性&#xff0c;开发者通常会选择使用框架来构建应用程序。在众多PHP框架中&#xff0c;Symfony以其强大的功能…...

鸿蒙开发:【线程模型】

线程模型 线程类型 Stage模型下的线程主要有如下三类&#xff1a; 主线程 执行UI绘制。管理主线程的ArkTS引擎实例&#xff0c;使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例&#xff0c;例如使用TaskPool&#xff08;任务池&#xff09;创建任务或取消…...

初级网络工程师之从入门到入狱(三)

本文是我在学习过程中记录学习的点点滴滴&#xff0c;目的是为了学完之后巩固一下顺便也和大家分享一下&#xff0c;日后忘记了也可以方便快速的复习。 中小型网络系统综合实战实验 前言一、详细拓扑图二、LSW2交换机三、LSW3交换机四、LSW1三层交换机4.1、4.2、4.3、4.4、4.5、…...

【数据结构】排序(直接插入、折半插入、希尔排序、快排、冒泡、选择、堆排序、归并排序、基数排序)

目录 排序一、插入排序1.直接插入排序2.折半插入排序3.希尔排序 二、交换排序1.快速排序2.冒泡排序 三、选择排序1. 简单选择排序2. 堆排序3. 树排序 四、归并排序(2-路归并排序)五、基数排序1. 桶排序&#xff08;适合元素关键字值集合并不大&#xff09;2. 基数排序基数排序的…...

MongoDB ObjectId 详解

MongoDB ObjectId 详解 MongoDB 是一个流行的 NoSQL 数据库,它使用 ObjectId 作为文档的唯一标识符。ObjectId 是一个 12 字节的 BSON 类型,它在 MongoDB 中用于保证每个文档的唯一性。本文将详细解释 ObjectId 的结构、生成方式以及它在 MongoDB 中的应用。 ObjectId 的结…...

大数据-11-案例演习-淘宝双11数据分析与预测 (期末问题)

目录 第一部分 Hadoop是什么 官方解释&#xff1a; 个人总结 HDFS 是什么? 官方解释&#xff1a; 个人总结 yarn是什么? 官方解释&#xff1a; 个人总结 mapreduce&#xff0c;spark 是什么? 官方解释&#xff1a; MapReduce Spark 个人总结 MapReduce Spa…...

Kubernetes集群监控,kube-prometheus安装教程,一键部署

Kube-prometheus介绍 Kube-prometheus 是一个用于监控 Kubernetes 集群的完整解决方案。它基于 Prometheus 生态系统&#xff0c;提供了一整套预配置的组件和配置文件&#xff0c;以便轻松地在 Kubernetes 上部署和运行 Prometheus 监控系统。 Kube-prometheus 主要包括以下组…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...