当前位置: 首页 > news >正文

计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换

图像变换:点运算、灰度变换、直方图变换

  • 1.点运算
    • (1)What
    • (2)Why
  • 2.灰度变换
    • (1)What
    • (2)Why(作用)
    • (3)Which(有哪些灰度变换)
  • 3.直方图修正
    • (1)直方图均衡化

1.点运算

(1)What

通过点运算,输出图像的每个像素的灰度值仅仅取决于输入图像中相对应像素的灰度值。

(2)Why

点运算的作用:实现图像增强的常用方法之一

2.灰度变换

(1)What

灰度变换是一种点运算的具体形式,换句话说,灰度变换是点运算的一种运用

(2)Why(作用)

增强对比度,是增强图像的重要手段(途径)和方法

  • 改善图像的质量:显示更多细节,进行对比度拉伸
  • 突出感兴趣的特征:针对图像中感兴趣的区域进行突出或抑制

(3)Which(有哪些灰度变换)

核心:灰度变换函数的不同

  • A.线性灰度变换
    y = k * f(x) + b
    当k>1:对比度将增大
    当k<1:对比度将减小
    当k=1,b!=0:图像整体变亮或变暗
    当k=-1,b=255:图像灰度正好相反
    当k<0,b>0:暗区域变亮,亮区域变暗
  • B.分段线性灰度变换

在这里插入图片描述
确定分段函数的三个k值和b值即可实现分段灰度变换效果。
分段线性灰度变换的效果对参数的选取依赖很高,当参数选取不好的时候,不但无法实现增强图像的效果,还可能变得更加糟糕。为此实现自适应选取成为分段线性灰度变换的关键。目前常用的方法有:自适应最小误差法多尺度逼近方法
恒增强率方法等。

  • C.非线性变换-对数变换
    g(x) = c * log(1+f(x))
  • D.非线性变换-反对数变换
    g(x) = ( (f(x)+1)^r -1 ) / f(x)
  • E.非线性变换-幂律变换
    g(x) = c*f(x)^alpha

3.直方图修正

(1)直方图均衡化

直方图均衡化可实现图像的自动增强,但效果不易控制,得到的是全局增强的结果
  • step01:统计每一个灰度级的数量
// 统计输入图像的灰度级数量
std::vector<int> vNk(256, 0);
int iTotal = imDst.total();
for (int i = 0; i < imDst.total(); ++i)
{vNk[imDst.data[i]]++;
}
  • step02:求累积分布
// 求累积分布函数
for (int i = 1; i < 256; ++i)
{vNk[i] = vNk[i] + vNk[i - 1];
}
  • step03:建立映射关系
// 确定映射关系
std::vector<double> vMPk(256, 0.0);
for (int i = 0; i < 256; ++i)
{vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
}
// 重新赋值实现均衡化
for (int i = 0; i < iTotal; ++i)
{imDst.data[i] = vMPk[imDst.data[i]];
}

代码汇总如下(可直接使用):

/* 图像均衡化 */
int ImgEqualize(const cv::Mat& imSrc, cv::Mat& imDst) {// 对输入的数据进行可靠性判定if (imSrc.empty()) return -1;// 对输入图像进行灰度化处理if (imSrc.channels() == 3)cv::cvtColor(imSrc, imDst, cv::COLOR_RGB2GRAY);else imDst = imSrc;// 统计输入图像的灰度级数量std::vector<int> vNk(256, 0);int iTotal = imDst.total();for (int i = 0; i < imDst.total(); ++i){vNk[imDst.data[i]]++;}// 求累积分布函数for (int i = 1; i < 256; ++i){vNk[i] = vNk[i] + vNk[i - 1];}// 确定映射关系std::vector<double> vMPk(256, 0.0);for (int i = 0; i < 256; ++i){vMPk[i] = 255.0f * (double)vNk[i] / iTotal;}// 重新赋值实现均衡化for (int i = 0; i < iTotal; ++i){imDst.data[i] = vMPk[imDst.data[i]];}}

相关文章:

计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换

图像变换&#xff1a;点运算、灰度变换、直方图变换 1.点运算(1)What(2)Why 2.灰度变换(1)What(2)Why(作用)(3)Which(有哪些灰度变换&#xff09; 3.直方图修正(1)直方图均衡化 1.点运算 (1)What 通过点运算&#xff0c;输出图像的每个像素的灰度值仅仅取决于输入图像中相对应…...

4.MongoDB sharding Cluster 分片集群

MongoDB分片集群的介绍&#xff1a; 是MongoDB提供的一种可水平扩展的数据存储解决方案。 当单个MongoDB服务器无法满足数据存储需求或吞吐量要求时&#xff0c;可以使用分片集群来分散数据量和查询负载。分片集群的结构组成&#xff1a; 1.分片&#xff08;shards&#xff09;…...

PDF转图片工具

背景&#xff1a; 今天有个朋友找我&#xff1a;“我有个文件需要更改&#xff0c;但是文档是PDF的&#xff0c;需要你帮我改下内容&#xff0c;你是搞软件的&#xff0c;这个对你应该是轻车熟路了吧&#xff0c;帮我弄弄吧”&#xff0c;听到这话我本想反驳&#xff0c;我是开…...

Day 19:419. 甲板上的战舰

Leetcode 419. 甲板上的战舰 给你一个大小为 m x n 的矩阵 board 表示甲板&#xff0c;其中&#xff0c;每个单元格可以是一艘战舰 ‘X’ 或者是一个空位 ‘.’ &#xff0c;返回在甲板 board 上放置的 战舰 的数量。 战舰 只能水平或者垂直放置在 board 上。换句话说&#xff…...

Web前端专科实习:技能提升、实践挑战与职业展望

Web前端专科实习&#xff1a;技能提升、实践挑战与职业展望 在数字化时代&#xff0c;Web前端技术作为连接用户与互联网世界的桥梁&#xff0c;其重要性日益凸显。作为一名Web前端专科实习生&#xff0c;我有幸在这个充满机遇和挑战的领域进行实践学习。接下来&#xff0c;我将…...

简单脉冲动画效果实现

简单脉冲动画效果实现 效果展示 CSS 知识点 CSS 变量的灵活使用CSS 动画使用 页面整体结构实现 <div class"pulse"><span style"--i: 1"></span><span style"--i: 2"></span><span style"--i: 3"…...

apache poi 插入“下一页分节符”并设置下一节纸张横向的一种方法

一、需求描述 我们知道&#xff0c;有时在word中需要同时存在不同的节&#xff0c;部分页面需要竖向、部分页面需要横向。本文就是用java调用apache poi来实现用代码生成上述效果。下图是本文实现的效果&#xff0c;供各位看官查阅&#xff0c;本文以一篇课文为例&#xff0c;…...

【React】useCallback和useMemo使用指南

useCallback和useMemo是React中两个用于优化性能的Hooks。以下是它们的使用指南,分点表示并归纳了关键信息: useCallback useCallback返回一个记忆化的回调函数,该回调函数只在它的依赖项发生改变时才会更新。这对于在组件渲染之间保持稳定的引用特别有用,可以防止不必要…...

XMind软件下载-详细安装教程视频

​简介 XMind是一款实用的思维导图软件&#xff0c;简单易用、美观、功能强大&#xff0c;拥有高效的可视化思维模式&#xff0c;具备可扩展、跨平台、稳定性和性能&#xff0c;真正帮助用户提高生产率&#xff0c;促进有效沟通及协作。中文官方网站&#xff1a;http://www.x…...

一个小的画布Canvas页面,记录点的轨迹

Hello大家好&#xff0c;好久没有更新了&#xff0c;最近在忙一些其他的事&#xff0c;今天说一下画布canvas&#xff0c;下面是我的代码&#xff0c;实现了一个点从画布的&#xff08;0,0&#xff09;到&#xff08;canvas.width&#xff0c;canvas.height&#xff09;的一个实…...

docker-compose教程

1. docker-compose是什么&#xff1f; 1. 1 简介 compose、machine 和 swarm 是docker 原生提供的三大编排工具。 简称docker三剑客。Compose 项目是 Docker 官方的开源项目&#xff0c;定义和运行多个 Docker 容器的应用&#xff08;Defining and running multi-container Do…...

结果出乎意料!MySQL和MariaDB谁快?MySQL 8.0比MySQL 5.6快吗?

MySQL和MariaDB哪个更快&#xff1f;MySQL 8.0的版本和早期MySQL 5.6的版本哪个更快&#xff1f;这儿有个第三方的测试报告回答了这两个大家关心的问题&#xff0c;姚远来和大家一起解读一下。https://smalldatum.blogspot.com/2024/04/sysbench-on-small-server-mariadb-and.h…...

Alienware外星人X17R2 原装Win11系统镜像下载 带SupportAssist OS Recovery一键恢复

装后恢复到您开箱的体验界面&#xff0c;包括所有原机所有驱动AWCC、Mydell、office、mcafee等所有预装软件。 最适合您电脑的系统&#xff0c;经厂家手调试最佳状态&#xff0c;性能与功耗直接拉满&#xff0c;体验最原汁原味的系统。 原厂系统下载网址&#xff1a;http://w…...

【NI国产替代】高速数据采集模块,最大采样率为 125 Msps,支持 FPGA 定制化

• 双通道高精度数据采集 • 支持 FPGA 定制化 • 双通道高精度采样率 最大采样率为 125 Msps12 位 ADC 分辨率 最大输入电压为 0.9 V -3 dB 带宽为 30 MHz 支持 FPGA 定制化 根据需求编程实现特定功能和性能通过定制 FPGA 实现硬件加速&#xff0c;提高系统的运算速度FPGA…...

【网络安全的神秘世界】2024.6.6 Docker镜像停服?解决最近Docker镜像无法拉取问题

&#x1f31d;博客主页&#xff1a;泥菩萨 &#x1f496;专栏&#xff1a;Linux探索之旅 | 网络安全的神秘世界 | 专接本 解决Docker镜像无法拉取问题 &#x1f64b;‍♂️问题描述 常用镜像站&#xff1a;阿里云、科大、南大、上交等&#xff0c;全部挂掉 执行docker pull命…...

【Python入门与进阶】1基本输入和输出

基本输入输出 1.等号赋值 1.1 基本赋值 number_110number_1 1.2 多个赋值 number_2number_3number_420 number_2 number_3 number_4 1.3 多重赋值 number_5,number_6,number_730,35,40 number_5 number_6 number_7 1.4 下划线赋值 _50 _ 2.命名规则 注意&#xff1a…...

CTF Show MISC做题笔记

MISCX 30 题目压缩包为misc2.rar,其中包含三个文件:misc1.zip, flag.txt, hint.txt。其中后两个文件是加密的。 先解压出misc1.zip, 发现其中包含两个文件&#xff1a;misc.png和music.doc。其中后面文件是加密的。 解压出misc.png,发现图片尾部有消息&#xff1a;flag{flag…...

【QT5】<总览二> QT信号槽、对象树及常用函数

文章目录 前言 一、QT信号与槽 1. 信号槽连接模型 2. 信号槽介绍 3. 自定义信号槽 二、QT的对象树 三、添加资源文件 四、样式表的使用 五、QSS文件的使用 六、常用函数与宏 前言 承接【QT5】&#xff1c;总览一&#xff1e; QT环境搭建、快捷键及编程规范。若存在版…...

Button按钮类

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 按钮是GUI界面中应用最为广泛的控件&#xff0c;它常用于捕获用户生成的单击事件&#xff0c;其最明显的用途是触发绑定到一个处理函数。 wxPython类…...

代码随想录-二叉树 | 111 二叉树的最小深度

代码随想录-二叉树 | 111 二叉树的最小深度 LeetCode 111 二叉树的最小深度解题思路代码难点总结 LeetCode 111 二叉树的最小深度 题目链接 代码随想录 题目描述 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...