【NI国产替代】高速数据采集模块,最大采样率为 125 Msps,支持 FPGA 定制化
• 双通道高精度数据采集
• 支持 FPGA 定制化
• 双通道高精度采样率
- 最大采样率为 125 Msps
- 12 位 ADC 分辨率
- 最大输入电压为 ±0.9 V
- -3 dB 带宽为 30 MHz

支持 FPGA 定制化
- 根据需求编程实现特定功能和性能
- 通过定制 FPGA 实现硬件加速,提高系统的运算速度
- FPGA 的灵活性使得这种采集板可以适应不同应用领域,如信号处理、图像处理等
双通道高精度采样率
- 具有最大采样率为 125 Msps
- 12 位 ADC 分辨率
- 可用于波形采集和频域分析

相关文章:
【NI国产替代】高速数据采集模块,最大采样率为 125 Msps,支持 FPGA 定制化
• 双通道高精度数据采集 • 支持 FPGA 定制化 • 双通道高精度采样率 最大采样率为 125 Msps12 位 ADC 分辨率 最大输入电压为 0.9 V -3 dB 带宽为 30 MHz 支持 FPGA 定制化 根据需求编程实现特定功能和性能通过定制 FPGA 实现硬件加速,提高系统的运算速度FPGA…...
【网络安全的神秘世界】2024.6.6 Docker镜像停服?解决最近Docker镜像无法拉取问题
🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 解决Docker镜像无法拉取问题 🙋♂️问题描述 常用镜像站:阿里云、科大、南大、上交等,全部挂掉 执行docker pull命…...
【Python入门与进阶】1基本输入和输出
基本输入输出 1.等号赋值 1.1 基本赋值 number_110number_1 1.2 多个赋值 number_2number_3number_420 number_2 number_3 number_4 1.3 多重赋值 number_5,number_6,number_730,35,40 number_5 number_6 number_7 1.4 下划线赋值 _50 _ 2.命名规则 注意:…...
CTF Show MISC做题笔记
MISCX 30 题目压缩包为misc2.rar,其中包含三个文件:misc1.zip, flag.txt, hint.txt。其中后两个文件是加密的。 先解压出misc1.zip, 发现其中包含两个文件:misc.png和music.doc。其中后面文件是加密的。 解压出misc.png,发现图片尾部有消息:flag{flag…...
【QT5】<总览二> QT信号槽、对象树及常用函数
文章目录 前言 一、QT信号与槽 1. 信号槽连接模型 2. 信号槽介绍 3. 自定义信号槽 二、QT的对象树 三、添加资源文件 四、样式表的使用 五、QSS文件的使用 六、常用函数与宏 前言 承接【QT5】<总览一> QT环境搭建、快捷键及编程规范。若存在版…...
Button按钮类
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 按钮是GUI界面中应用最为广泛的控件,它常用于捕获用户生成的单击事件,其最明显的用途是触发绑定到一个处理函数。 wxPython类…...
代码随想录-二叉树 | 111 二叉树的最小深度
代码随想录-二叉树 | 111 二叉树的最小深度 LeetCode 111 二叉树的最小深度解题思路代码难点总结 LeetCode 111 二叉树的最小深度 题目链接 代码随想录 题目描述 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说…...
PCA降维算法
decomposition.h #pragma once #include <arrayfire.h>namespace decomposition {class PCA{public:af::array zero_centred(af::array...
Fast R-CNN 与 R-CNN的不同之处
目录 一、Fast R-CNN如何生成候选框特征矩阵 二、 关于正负样本的解释 三、训练样本的候选框 四、Fast R-CNN网络架构 4.1 分类器 4.2 边界框回归器 一、Fast R-CNN如何生成候选框特征矩阵 在R-CNN中,通过SS算法得到2000个候选框,则需要进行2000…...
前端开发环境:Vue、Element Plus、Axios
目录 1. Vue简介 2. Element Plus简介 3. Axios简介 4. 创建Vue项目 4.1 Node.js安装 4.2 创建Vue项目 4.3 Vue项目的结构 4.4 安装Element-Plus 4.5 安装Axios 4.6 解决跨域问题 5. 应用实例 5.1 创建Vue组件 5.2 配置路由 5.3 配置根组件 5.4 启动前端应用服…...
我的创作纪念日-在SCDN的5年
机缘 五年前,一个偶然的机会让我接触到了SCDN这个充满活力和创造力的社区。我抱着对技术的热爱和对知识的渴望,决定在这里开启我的创作之旅。最初,我成为创作者的初心,是希望将自己在实战项目中的经验、日常学习过程中的点滴&…...
AI-知识库搭建(二)GPT-Embedding模型使用
上一篇:AI-知识库搭建(一)腾讯云向量数据库使用-CSDN博客 一、Embedding模型 Embedding模型是一种将高维度的离散数据(如文本、图像、音频等)映射到低维度的连续向量空间的技术。这种技术广泛应用于自然语言处理&…...
qt网络事件之QSocketNotifier
简介 QSocketNotifier用于处理网络事件的,即事件处理器 结构 #mermaid-svg-xcNdAyHNkKqNCLQY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-xcNdAyHNkKqNCLQY .error-icon{fill:#552222;}#mermaid-svg-xcNdAyHNk…...
如何统计EXCEL中的数据透视表的信息?
也没什么可分析的,直接上代码,看看是不是你需要的: Sub GetPVT() 定义一个1000行的数组,如果你预判工作簿中数据透视表数量可能大小1000,那就改成10000,甚至10万,以确保能大于数据透视表数量即…...
日本结构型产品及衍生品业务变迁报告
日本结构型产品及衍生品业务变迁报告 一、业务发展阶段 阶段一:2000年之前 零售结构型产品几乎不存在,主要销售对象为机构投资者或企业。主要策略为卖出看涨期权(covered call)。会计记录准则对业务有重要影响,例如…...
解决Mac无法上网/网络异常的方法,重置网络
解放方法 1、前往文件夹:/Library/Preferences/SystemConfiguration 2 、在弹窗中输入上边的地址 3 、把文件夹中除了下图未选中的文件全部删掉,删除时需要输入密码 4 、重启mac 电脑就搞定了。...
[12] 使用 CUDA 进行图像处理
使用 CUDA 进行图像处理 当下生活在高清摄像头的时代,这种摄像头能捕获高达1920*1920像素的高解析度画幅。想要实施的处理这么多的数据,往往需要几个TFlops地浮点处理性能,这些要求CPU也无法满足通过在代码中使用CUDA,可以利用GP…...
MyBatisPlus代码生成器(交互式)快速指南
引言 本片文章是对代码生成器(交互)快速配置使用流程,更多配置方法可查看官方文档: 代码生成器配置官网 如有疑问欢迎评论区交流! 文章目录 引言演示效果图引入相关依赖创建代码生成器对象引入Freemarker模板引擎依赖支持的模板引擎 MyBat…...
深度学习模型训练之日志记录
在深度学习模型训练过程中,进行有效的训练日志记录是至关重要的。以下是一些常见的策略和工具来实现这一目标: 1. 使用TensorBoard TensorBoard是TensorFlow提供的一个可视化工具,用于记录和展示训练过程中的各种指标。 设置TensorBoard&a…...
深入理解Python中的装饰器
装饰器是Python中一个强大且灵活的工具,允许开发者在不修改函数或类定义的情况下扩展或修改其行为。装饰器广泛应用于日志记录、访问控制、缓存等场景。本文将详细探讨Python中的装饰器,包括基本概念、函数装饰器和类装饰器、内置装饰器以及装饰器的高级用法。 目录 装饰器概…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
