当前位置: 首页 > news >正文

Fast R-CNN 与 R-CNN的不同之处

目录

一、Fast R-CNN如何生成候选框特征矩阵

二、 关于正负样本的解释

三、训练样本的候选框  

四、Fast R-CNN网络架构

4.1 分类器

4.2 边界框回归器 


一、Fast R-CNN如何生成候选框特征矩阵

        在R-CNN中,通过SS算法得到2000个候选框,则需要进行2000次正向传播 得到2000个特征 —— 很冗余 ——很多重叠部分计算计算一次就可以。

        在Fast R-CNN中,直接将整张图片送入CNN得到这张图片的特征图,再根 据候选框与原图的关系映射到特征图上,就不需要重复运算了。——大幅度提 升Fast R-CNN的运算速度  

二、 关于正负样本的解释

        在Fast R-CNN网络训练过程中,并不会使用SS算法提供的所有候选框(SS 算法生成大约2000个候选框),只需使用一小部分的数据即可。对于采样数 据,它分为“正样本”和“负样本”。

        正样本:候选框中确实存在所需检测目标(前景)的样本

        负样本:候选框中没有所需检测目标(背景)的样本

为什么要将样本分为正样本和负样本呢?

        假如我们要训练一个猫狗分类器,如果猫的样本数量远大于狗的样本数量 (数据不平衡),网络在预测时会更偏向于“猫”,很明显这样是不对的。如果数 据中全是“猫”的样本, 没有“狗”的样本,那么网络预测几乎一定会出现问题。

        同理,在训练Fast R-CNN时,如果数据中全部都是正样本,那么网络就会 很大概率认为候选区域是所需要检测的目标(可能这个框明明框住的是背景, 但网络仍会认为这个被框住的背景是有用的,是一个前景),这时网络肯定会 出问题。所以数据要分为正样本和负样本。

        在原论文中,对于每一张图片,从2000个候选框中采集64个候选框。这64 个候选框,一部分框的是正样本,一部分框的是负样本。那么正样本是如何定 义的呢?

        只要候选框与真实框(GT)的IoU大于0.5,则认定为正样本,反之认定为 负样本。

三、训练样本的候选框  

原理:

 

        左边图其实是一个经过特征提取的特征图,本身可视化出来也是很抽象 的,这里只是为了方便理解,使用了RGB图像。

        具体实现为:将特征图划分为 7×7 个小块,对其每一小块执行MaxPooling

        这样处理对输入特征图的尺寸没有要求了,无论怎样都可以缩放到7×7 -> 在R-CNN中,输入图像被限定为227×227,而在Fast R-CNN中,输入图像尺寸 不再被限制。

        这里忽略了Channel维度,和最大池化一样,有几个通道就做几次,最后 concat就可以了。  

四、Fast R-CNN网络架构

4.1 分类器

4.2 边界框回归器 

 

d x , d y :用 来 调 整 候 选 框 中 心 坐 标 的 回 归 参 数

d w , d h :用 来 调 整 候 选 框 宽 度 和 高 度 的 回 归 参 数  

相关文章:

Fast R-CNN 与 R-CNN的不同之处

目录 一、Fast R-CNN如何生成候选框特征矩阵 二、 关于正负样本的解释 三、训练样本的候选框 四、Fast R-CNN网络架构 4.1 分类器 4.2 边界框回归器 一、Fast R-CNN如何生成候选框特征矩阵 在R-CNN中,通过SS算法得到2000个候选框,则需要进行2000…...

前端开发环境:Vue、Element Plus、Axios

目录 1. Vue简介 2. Element Plus简介 3. Axios简介 4. 创建Vue项目 4.1 Node.js安装 4.2 创建Vue项目 4.3 Vue项目的结构 4.4 安装Element-Plus 4.5 安装Axios 4.6 解决跨域问题 5. 应用实例 5.1 创建Vue组件 5.2 配置路由 5.3 配置根组件 5.4 启动前端应用服…...

我的创作纪念日-在SCDN的5年

机缘 五年前,一个偶然的机会让我接触到了SCDN这个充满活力和创造力的社区。我抱着对技术的热爱和对知识的渴望,决定在这里开启我的创作之旅。最初,我成为创作者的初心,是希望将自己在实战项目中的经验、日常学习过程中的点滴&…...

AI-知识库搭建(二)GPT-Embedding模型使用

上一篇:AI-知识库搭建(一)腾讯云向量数据库使用-CSDN博客 一、Embedding模型 Embedding模型是一种将高维度的离散数据(如文本、图像、音频等)映射到低维度的连续向量空间的技术。这种技术广泛应用于自然语言处理&…...

qt网络事件之QSocketNotifier

简介 QSocketNotifier用于处理网络事件的,即事件处理器 结构 #mermaid-svg-xcNdAyHNkKqNCLQY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-xcNdAyHNkKqNCLQY .error-icon{fill:#552222;}#mermaid-svg-xcNdAyHNk…...

如何统计EXCEL中的数据透视表的信息?

也没什么可分析的,直接上代码,看看是不是你需要的: Sub GetPVT() 定义一个1000行的数组,如果你预判工作簿中数据透视表数量可能大小1000,那就改成10000,甚至10万,以确保能大于数据透视表数量即…...

日本结构型产品及衍生品业务变迁报告

日本结构型产品及衍生品业务变迁报告 一、业务发展阶段 阶段一:2000年之前 零售结构型产品几乎不存在,主要销售对象为机构投资者或企业。主要策略为卖出看涨期权(covered call)。会计记录准则对业务有重要影响,例如…...

解决Mac无法上网/网络异常的方法,重置网络

解放方法 1、前往文件夹:/Library/Preferences/SystemConfiguration 2 、在弹窗中输入上边的地址 3 、把文件夹中除了下图未选中的文件全部删掉,删除时需要输入密码 4 、重启mac 电脑就搞定了。...

[12] 使用 CUDA 进行图像处理

使用 CUDA 进行图像处理 当下生活在高清摄像头的时代,这种摄像头能捕获高达1920*1920像素的高解析度画幅。想要实施的处理这么多的数据,往往需要几个TFlops地浮点处理性能,这些要求CPU也无法满足通过在代码中使用CUDA,可以利用GP…...

MyBatisPlus代码生成器(交互式)快速指南

引言 本片文章是对代码生成器(交互)快速配置使用流程,更多配置方法可查看官方文档: 代码生成器配置官网 如有疑问欢迎评论区交流! 文章目录 引言演示效果图引入相关依赖创建代码生成器对象引入Freemarker模板引擎依赖支持的模板引擎 MyBat…...

深度学习模型训练之日志记录

在深度学习模型训练过程中,进行有效的训练日志记录是至关重要的。以下是一些常见的策略和工具来实现这一目标: 1. 使用TensorBoard TensorBoard是TensorFlow提供的一个可视化工具,用于记录和展示训练过程中的各种指标。 设置TensorBoard&a…...

深入理解Python中的装饰器

装饰器是Python中一个强大且灵活的工具,允许开发者在不修改函数或类定义的情况下扩展或修改其行为。装饰器广泛应用于日志记录、访问控制、缓存等场景。本文将详细探讨Python中的装饰器,包括基本概念、函数装饰器和类装饰器、内置装饰器以及装饰器的高级用法。 目录 装饰器概…...

基于springboot的人力资源管理系统源码数据库

传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,员工信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不能满足广大用户的…...

如何舒适的使用VScode

安装好VScode后通常会很不好用,以下配置可以让你的VScode变得好用许多。 VScode的配置流程 1、设置VScode中文2、下载C/C拓展,使代码可以跳转3、更改编码格式4、设置滚轮缩放5、设置字体6、设置保存自动改变格式7、vscode设置快捷代码 1、设置VScode中文…...

【微信小程序】开发环境配置

目录 小程序的标准开发模式: 注册小程序的开发账号 安装开发者工具 下载 设置外观和代理 第一个小程序 -- 创建小程序项目 查看项目效果 第一种:在模拟器上查看项目效果 项目的基本组成结构 小程序代码的构成 app.json文件 project.config…...

启动盘镜像制作神器(下载即用)

一、简介 1、一款受欢迎且功能强大的USB启动盘制作工具,允许用户将操作系统镜像文件(如Windows或Linux的ISO文件)制作成可引导的USB启动盘。它支持多种操作系统,包括Windows、Linux和各种基于UEFI的系统。Rufus的一个显著特点是制作速度快,据称其速度比其他常用工具如UNet…...

PHP框架详解 - Symfony框架

引言 在现代Web开发中,PHP作为一种灵活且功能强大的编程语言,广泛应用于各种Web应用程序的开发中。为了提高开发效率、代码的可维护性和可扩展性,开发者通常会选择使用框架来构建应用程序。在众多PHP框架中,Symfony以其强大的功能…...

鸿蒙开发:【线程模型】

线程模型 线程类型 Stage模型下的线程主要有如下三类: 主线程 执行UI绘制。管理主线程的ArkTS引擎实例,使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例,例如使用TaskPool(任务池)创建任务或取消…...

初级网络工程师之从入门到入狱(三)

本文是我在学习过程中记录学习的点点滴滴,目的是为了学完之后巩固一下顺便也和大家分享一下,日后忘记了也可以方便快速的复习。 中小型网络系统综合实战实验 前言一、详细拓扑图二、LSW2交换机三、LSW3交换机四、LSW1三层交换机4.1、4.2、4.3、4.4、4.5、…...

【数据结构】排序(直接插入、折半插入、希尔排序、快排、冒泡、选择、堆排序、归并排序、基数排序)

目录 排序一、插入排序1.直接插入排序2.折半插入排序3.希尔排序 二、交换排序1.快速排序2.冒泡排序 三、选择排序1. 简单选择排序2. 堆排序3. 树排序 四、归并排序(2-路归并排序)五、基数排序1. 桶排序(适合元素关键字值集合并不大)2. 基数排序基数排序的…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

【C++进阶篇】智能指针

C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

C++ 设计模式 《小明的奶茶加料风波》

👨‍🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...