当前位置: 首页 > news >正文

我的创作纪念日-在SCDN的5年

机缘

五年前,一个偶然的机会让我接触到了SCDN这个充满活力和创造力的社区。我抱着对技术的热爱和对知识的渴望,决定在这里开启我的创作之旅。最初,我成为创作者的初心,是希望将自己在实战项目中的经验、日常学习过程中的点滴,以及技术上的见解和心得,与更多人分享。这种分享不仅让我获得了成长,也使我感受到了与他人交流知识的快乐。

收获

在SCDN的五年里,我收获了无数的宝贵财富。首先,我的文章吸引了数万名粉丝的关注,他们的每一次点赞、评论和转发都是对我努力的肯定,也是我继续前行的动力源泉。他们的反馈让我深感自己的努力得到了认可,也让我更加明白了写作的价值和意义。

其次,这五年的创作让我积累了丰富的经验和知识。我不仅学会了如何更好地组织和表达自己的想法,还深入了解了各种技术细节和实现方法。这些经验和知识不仅提升了我的技术水平,也为我未来的职业发展奠定了坚实的基础。

此外,我还结识了许多志同道合的领域同行。他们中有的是我的粉丝,有的是通过我的文章认识的志同道合的朋友。我们一起探讨技术难题、分享学习心得、互相支持和鼓励。这些交流和合作不仅让我收获了更多的知识和经验,也让我感受到了技术社区的温暖和力量。

最后,这五年的创作也让我深刻体会到了知识的力量和分享的价值。我深知自己的成长和进步离不开他人的帮助和支持,因此我也愿意将自己的经验和知识分享给更多的人。我相信,通过分享和交流,我们可以共同推动技术的发展和创新,为整个社会带来更多的价值。

成就

在过去的五年里,我编写了许多代码,其中有一段用于复杂数据分析的Python代码是我最为骄傲的成就。这段代码不仅处理数据的能力强大,而且具备高度的灵活性和可扩展性。以下是这段代码的详细展示:


python
# 这是一个复杂的数据分析处理代码示例  
import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.preprocessing import StandardScaler  
from sklearn.decomposition import PCA  # 假设我们有一个名为'data.csv'的数据集  
df = pd.read_csv('data.csv')  # 数据标准化  
scaler = StandardScaler()  
scaled_data = scaler.fit_transform(df[['feature1', 'feature2', 'feature3']])  # 使用PCA进行降维  
pca = PCA(n_components=2)  
principalComponents = pca.fit_transform(scaled_data)  # 绘制降维后的数据分布图  
plt.figure(figsize=(8, 6))  
plt.scatter(principalComponents[:, 0], principalComponents[:, 1], c=df['target'])  
plt.xlabel('Principal Component 1')  
plt.ylabel('Principal Component 2')  
plt.title('PCA of Dataset')  
plt.show()  # 它展示了我在数据处理和分析方面的能力,也体现了我对技术的深入理解和应用

这段代码不仅解决了我在工作中的实际问题,还得到了同事和同行们的高度评价。它让我深刻体会到了编程的魅力和价值,也让我更加坚定了在技术领域不断追求卓越的决心。

以下是一个我日常工作中使用的代码示例,它展示了我对深度学习的应用:

# 导入所需的库  
import tensorflow as tf  
from tensorflow.keras.datasets import mnist  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D  # 加载MNIST数据集  
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()  # 数据预处理:将像素值缩放到0-1之间,并添加颜色通道维度  
train_images = train_images / 255.0  
test_images = test_images / 255.0  
train_images = train_images[..., tf.newaxis]  
test_images = test_images[..., tf.newaxis]  # 构建卷积神经网络模型  
model = Sequential([  Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),  MaxPooling2D((2, 2)),  Conv2D(64, (3, 3), activation='relu'),  MaxPooling2D((2, 2)),  Conv2D(64, (3, 3), activation='relu'),  Flatten(),  Dense(64, activation='relu'),  Dense(10)  
])  # 编译模型  
model.compile(optimizer='adam',  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  metrics=['accuracy'])  # 训练模型  
model.fit(train_images, train_labels, epochs=5)  # 评估模型  
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)  
print('\nTest accuracy:', test_acc)

这个代码示例展示了如何使用TensorFlow库构建和训练一个简单的卷积神经网络模型,用于MNIST手写数字分类任务。虽然这个示例相对简单,但它涵盖了深度学习模型构建和训练的基本步骤,包括数据加载、预处理、模型定义、编译和训练等。

憧憬

首先,我渴望在技术领域不断突破自我,掌握更多的前沿技术和方法。随着人工智能、大数据、云计算等技术的快速发展,我相信未来将有更多的机会和挑战等待着我。我将努力学习和掌握这些新技术,将其应用到实际项目中,为企业和社会创造更多的价值。

其次,我希望能够将自己的知识和经验分享给更多的人,帮助他们解决技术难题和实现个人成长。我计划通过撰写更多的技术博客、参与开源项目、举办技术讲座等方式,将自己的经验和见解分享给更多的人。我相信,通过分享和交流,我们可以共同推动技术的进步和创新,为整个社区的发展贡献自己的力量。

此外,我还希望能够与更多的同行和导师建立联系和合作。我深知自己在技术领域还有很多不足和需要学习的地方,因此我希望能够借助他们的力量,不断提升自己的能力和水平。通过与他们的交流和合作,我相信我能够更快地成长和进步。我相信,在未来的日子里,我会在SCDN社区收获更多的成长和喜悦。

相关文章:

我的创作纪念日-在SCDN的5年

机缘 五年前,一个偶然的机会让我接触到了SCDN这个充满活力和创造力的社区。我抱着对技术的热爱和对知识的渴望,决定在这里开启我的创作之旅。最初,我成为创作者的初心,是希望将自己在实战项目中的经验、日常学习过程中的点滴&…...

AI-知识库搭建(二)GPT-Embedding模型使用

上一篇:AI-知识库搭建(一)腾讯云向量数据库使用-CSDN博客 一、Embedding模型 Embedding模型是一种将高维度的离散数据(如文本、图像、音频等)映射到低维度的连续向量空间的技术。这种技术广泛应用于自然语言处理&…...

qt网络事件之QSocketNotifier

简介 QSocketNotifier用于处理网络事件的,即事件处理器 结构 #mermaid-svg-xcNdAyHNkKqNCLQY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-xcNdAyHNkKqNCLQY .error-icon{fill:#552222;}#mermaid-svg-xcNdAyHNk…...

如何统计EXCEL中的数据透视表的信息?

也没什么可分析的,直接上代码,看看是不是你需要的: Sub GetPVT() 定义一个1000行的数组,如果你预判工作簿中数据透视表数量可能大小1000,那就改成10000,甚至10万,以确保能大于数据透视表数量即…...

日本结构型产品及衍生品业务变迁报告

日本结构型产品及衍生品业务变迁报告 一、业务发展阶段 阶段一:2000年之前 零售结构型产品几乎不存在,主要销售对象为机构投资者或企业。主要策略为卖出看涨期权(covered call)。会计记录准则对业务有重要影响,例如…...

解决Mac无法上网/网络异常的方法,重置网络

解放方法 1、前往文件夹:/Library/Preferences/SystemConfiguration 2 、在弹窗中输入上边的地址 3 、把文件夹中除了下图未选中的文件全部删掉,删除时需要输入密码 4 、重启mac 电脑就搞定了。...

[12] 使用 CUDA 进行图像处理

使用 CUDA 进行图像处理 当下生活在高清摄像头的时代,这种摄像头能捕获高达1920*1920像素的高解析度画幅。想要实施的处理这么多的数据,往往需要几个TFlops地浮点处理性能,这些要求CPU也无法满足通过在代码中使用CUDA,可以利用GP…...

MyBatisPlus代码生成器(交互式)快速指南

引言 本片文章是对代码生成器(交互)快速配置使用流程,更多配置方法可查看官方文档: 代码生成器配置官网 如有疑问欢迎评论区交流! 文章目录 引言演示效果图引入相关依赖创建代码生成器对象引入Freemarker模板引擎依赖支持的模板引擎 MyBat…...

深度学习模型训练之日志记录

在深度学习模型训练过程中,进行有效的训练日志记录是至关重要的。以下是一些常见的策略和工具来实现这一目标: 1. 使用TensorBoard TensorBoard是TensorFlow提供的一个可视化工具,用于记录和展示训练过程中的各种指标。 设置TensorBoard&a…...

深入理解Python中的装饰器

装饰器是Python中一个强大且灵活的工具,允许开发者在不修改函数或类定义的情况下扩展或修改其行为。装饰器广泛应用于日志记录、访问控制、缓存等场景。本文将详细探讨Python中的装饰器,包括基本概念、函数装饰器和类装饰器、内置装饰器以及装饰器的高级用法。 目录 装饰器概…...

基于springboot的人力资源管理系统源码数据库

传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,员工信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不能满足广大用户的…...

如何舒适的使用VScode

安装好VScode后通常会很不好用,以下配置可以让你的VScode变得好用许多。 VScode的配置流程 1、设置VScode中文2、下载C/C拓展,使代码可以跳转3、更改编码格式4、设置滚轮缩放5、设置字体6、设置保存自动改变格式7、vscode设置快捷代码 1、设置VScode中文…...

【微信小程序】开发环境配置

目录 小程序的标准开发模式: 注册小程序的开发账号 安装开发者工具 下载 设置外观和代理 第一个小程序 -- 创建小程序项目 查看项目效果 第一种:在模拟器上查看项目效果 项目的基本组成结构 小程序代码的构成 app.json文件 project.config…...

启动盘镜像制作神器(下载即用)

一、简介 1、一款受欢迎且功能强大的USB启动盘制作工具,允许用户将操作系统镜像文件(如Windows或Linux的ISO文件)制作成可引导的USB启动盘。它支持多种操作系统,包括Windows、Linux和各种基于UEFI的系统。Rufus的一个显著特点是制作速度快,据称其速度比其他常用工具如UNet…...

PHP框架详解 - Symfony框架

引言 在现代Web开发中,PHP作为一种灵活且功能强大的编程语言,广泛应用于各种Web应用程序的开发中。为了提高开发效率、代码的可维护性和可扩展性,开发者通常会选择使用框架来构建应用程序。在众多PHP框架中,Symfony以其强大的功能…...

鸿蒙开发:【线程模型】

线程模型 线程类型 Stage模型下的线程主要有如下三类: 主线程 执行UI绘制。管理主线程的ArkTS引擎实例,使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例,例如使用TaskPool(任务池)创建任务或取消…...

初级网络工程师之从入门到入狱(三)

本文是我在学习过程中记录学习的点点滴滴,目的是为了学完之后巩固一下顺便也和大家分享一下,日后忘记了也可以方便快速的复习。 中小型网络系统综合实战实验 前言一、详细拓扑图二、LSW2交换机三、LSW3交换机四、LSW1三层交换机4.1、4.2、4.3、4.4、4.5、…...

【数据结构】排序(直接插入、折半插入、希尔排序、快排、冒泡、选择、堆排序、归并排序、基数排序)

目录 排序一、插入排序1.直接插入排序2.折半插入排序3.希尔排序 二、交换排序1.快速排序2.冒泡排序 三、选择排序1. 简单选择排序2. 堆排序3. 树排序 四、归并排序(2-路归并排序)五、基数排序1. 桶排序(适合元素关键字值集合并不大)2. 基数排序基数排序的…...

MongoDB ObjectId 详解

MongoDB ObjectId 详解 MongoDB 是一个流行的 NoSQL 数据库,它使用 ObjectId 作为文档的唯一标识符。ObjectId 是一个 12 字节的 BSON 类型,它在 MongoDB 中用于保证每个文档的唯一性。本文将详细解释 ObjectId 的结构、生成方式以及它在 MongoDB 中的应用。 ObjectId 的结…...

大数据-11-案例演习-淘宝双11数据分析与预测 (期末问题)

目录 第一部分 Hadoop是什么 官方解释: 个人总结 HDFS 是什么? 官方解释: 个人总结 yarn是什么? 官方解释: 个人总结 mapreduce,spark 是什么? 官方解释: MapReduce Spark 个人总结 MapReduce Spa…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...